×

Canonical form observer design for nonlinear time-variable systems. (English) Zbl 0521.93012


MSC:

93B10 Canonical structure
93C10 Nonlinear systems in control theory
93C99 Model systems in control theory
93B55 Pole and zero placement problems
93B07 Observability
93B17 Transformations
93B50 Synthesis problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ACKERMANN J., Abtaslregelung (1972) · doi:10.1007/978-3-662-11024-9
[2] BESTLE , D. , 1982 , Student thesis ( University of Stuttgart ).
[3] BRANDIN V. N., Autom. Rem. Control 36 pp 1585– (1976)
[4] FOLLINGER O., Begelu-ngstechnik 26 pp 189– (1978)
[5] FREUND E., Zeilvariahle Mekrgrqfiensystemc (1971)
[6] GELD A., Applied Optimal Estimation (1976)
[7] HWANG M., J. Optim. Theory Applic 10 pp 67– (1972) · Zbl 0226.93004 · doi:10.1007/BF00934972
[8] KAILATH T., Linear Systems (1980)
[9] Kou S. R., Inf. Control 29 pp 204– (1975) · Zbl 0319.93049 · doi:10.1016/S0019-9958(75)90382-4
[10] SOMMER R., Int. J. Control 31 pp 883– (1980) · Zbl 0442.93014 · doi:10.1080/00207178008961089
[11] THAU F. E., Int. J. Control 17 pp 471– (1973) · Zbl 0249.93006 · doi:10.1080/00207177308932395
[12] ZEITZ. M., Regelungstechnik 27 pp 241– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.