×

A limit theorem for projections. (English) Zbl 0523.47040


MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
47B99 Special classes of linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baillon J. B., Houston J. Math 4 pp 1– (1978)
[2] Bruck R. E., Pacific J.Math. 47 pp 341– (1973) · Zbl 0274.47030 · doi:10.2140/pjm.1973.47.341
[3] Bruck R.E., IsraelJ. Math. 32 pp 107– (1979) · Zbl 0423.47024 · doi:10.1007/BF02764907
[4] Bruck R.E., Houston J. Math. 3 pp 459– (1977)
[5] Deutsch, F. 1979.Multivariate Approximation Theory, 83–96. Basel: Birkha”user Verlag.
[6] deFigueiredo D. G., Proc. Symp. Pure Math. pp 95–
[7] Halperin I., Ada Sci. Math. (Szeged) 23 pp 96– (1962)
[8] Lapidus M. L., Integral Equations Operator Theory 4 pp 366– (1981) · Zbl 0463.47024 · doi:10.1007/BF01697972
[9] von Neumann J., Ann. of Math. 50 pp 401– (1949) · Zbl 0034.06102 · doi:10.2307/1969463
[10] Reich S., J. Math. Anal.Appl. 44 pp 57– (1973) · Zbl 0275.47034 · doi:10.1016/0022-247X(73)90024-3
[11] Reich S., J. Math. Anal. Appl. 67 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[12] Reich S., J. Functional Analysis 36 pp 147– (1980) · Zbl 0437.47048 · doi:10.1016/0022-1236(80)90097-X
[13] Reich S., J. Math. Anal. Appl. 79 pp 113– (1981) · Zbl 0457.47053 · doi:10.1016/0022-247X(81)90013-5
[14] Reich S., Nonlinear Phenomena in Mathematical Sciences pp 831– (1982) · doi:10.1016/B978-0-12-434170-8.50100-X
[15] Wiener N., Comment. Math. Heh. 29 pp 97– (1955) · Zbl 0064.06301 · doi:10.1007/BF02564273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.