×

Asymptotically constant functions and second order linear oscillation. (English) Zbl 0525.34026


MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A30 Linear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Coles, W. J.; Willett, D., Summability criteria for oscillation of second order linear differential equatons, Ann. Mat. Pura Appl., 391-398 (1979), 1968 · Zbl 0183.37001
[2] Coppel, W. A., Disconjugacy, (Lecture Notes in Mathematics No. 220 (1971), Springer-Verlag: Springer-Verlag New York Berlin) · Zbl 0224.34003
[3] Hartman, P., On linear second order differential equations with small coefficients, Amer. J. Math., 73, 955-962 (1951) · Zbl 0045.36401
[4] Hartman, P., On nonoscillatory linear differential equations of second order, Amer. J. Math., 74, 389-400 (1952) · Zbl 0048.06602
[5] Hartman, P., Ordinary Differential Equations (1964), Wiley: Wiley New York · Zbl 0125.32102
[6] Hille, E., Nonoscillation theorems, Trans. Amer. Math. Soc., 64, 234-252 (1948) · Zbl 0031.35402
[7] Kwong, M. K.; Zettl, A., Integral inequalities and second order linear oscillation, J. Differential Equations, 45, 16-33 (1982) · Zbl 0498.34022
[8] Oleck, C.; Opial, Z.; Wazewski, T., Sur le problème d’oscillation des integrales de l’équation \(y\)″ + \(q(t)y = 0\), Bull. Acad. Polon. Sci., III 5, 621-626 (1957), Cl. · Zbl 0078.07701
[9] Opial, Z., Sur les integrales oscillantes de l’equation differentielle \(u\)″ + \(f(t)u = 0\), Ann. Polon. Math., 4, 308-313 (1958) · Zbl 0083.07701
[10] Willett, D., On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math., 21, 175-194 (1969) · Zbl 0174.13701
[11] Willett, D., Classification of second order linear differential equations with respect to oscillation, Advan. in Math., 3, 594-623 (1969) · Zbl 0188.40101
[12] Wong, J. S., Oscillation and non-oscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc., 144, 197-215 (1969) · Zbl 0195.37402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.