Finite dimensional approximation of nonlinear problems. II: Limit points. (English) Zbl 0525.65036


65J15 Numerical solutions to equations with nonlinear operators
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35J65 Nonlinear boundary value problems for linear elliptic equations


Zbl 0488.65021
Full Text: DOI EuDML


[1] Berger, M.S.: Nonlinearity and functional analysis. New York: Academic Press, 1977 · Zbl 0368.47001
[2] Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math.36, 1-25 (1980) · Zbl 0488.65021 · doi:10.1007/BF01395985
[3] Fujii, H., Yamaguti, M.: Structure of singularities and its numerical realization in nonlinear elasticity. J. Math. Kyoto (in press) (1981). · Zbl 0519.73078
[4] Girault, V., Raviart, P.-A.: An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math.33, 235-271 (1979) · doi:10.1007/BF01398643
[5] Grisvard, P.: Singularité des solutions du problème de Stokes dans un polygone. Publication de I’Université de Nice (1978)
[6] Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of bifurcation theory. (P.H. Rabinowitz ed.), New York: Academic Press, pp. 359-384, 1977 · Zbl 0581.65043
[7] Kikuchi, F.: Numerical analysis of the finite element method applied to bifurcation problems of turning point type. ISAS Report no 564, University of Tokyo, 217-246 (1978)
[8] Kikuchi, F.: Finite element approximations to bifurcation problems of turning point type. Theoretical and Applied Mechanics27, 99-144 (1979) · Zbl 0416.65068
[9] Kikuchi, F.: Finite element approximation to bifurcation problems of turning point type. Troisième colloque international sur les méthodes de calcul scientifique et technique (Versailles 1977). Berlin Heidelberg New York: Springer 1981 (in press)
[10] Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with canical and angular points. Trudy. Moskov. Mat. Ob??. 209-292 (1967)
[11] Paumier, J.C.: Une méthode numérique pour le calcul des points de retournement. Application au problème de Dirichlet ??u=?e u (in press) (1981)
[12] Scholz, R.: Finite element turning points of the Navier-Stokes equations. Conference on Progress in the Theory and Practice of the Finite Element Method. Chalmers University of Technology, Göteborg (1979)
[13] Simpson, R.B.: Existence and error estimates for solutions of a discrete analog of nonlinear eigenvalue problems. Math. Comput.26, 359-375 (1972) · Zbl 0256.65048 · doi:10.1090/S0025-5718-1972-0315918-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.