Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. (English) Zbl 0526.58023


53D55 Deformation quantization, star products
53D17 Poisson manifolds; Poisson groupoids and algebroids
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
58A12 de Rham theory in global analysis
Full Text: DOI


[1] ArnalD., CortetJ.C., FlatoM., and SternheimerD., ?Star-Products: Quantization and Representation Without Operators?, in E.Tirapegui (ed.), Field Theory Quantization and Statistical Physics, Reidel, Dordrecht, 1981, pp. 85-111.
[2] CahenM. and GuttS., Lett. Math. Phys. 6, 395-404 (1982). · Zbl 0522.58018 · doi:10.1007/BF00419321
[3] De Wilde, M., Gutt, S., and Lecomte, P., ?A propos des deuxième et troisième espaces de cohomologie de l’algèbre de Lie de Poisson d’une variété symplectique?, Ann. Inst. Poincaré, to appear. · Zbl 0547.53024
[4] DeWildeM. and LecomteP., Lett. Math. Phys. 7, 235-241 (1983). · Zbl 0514.53031 · doi:10.1007/BF00400439
[5] De Wilde, M. and Lecomte, P., ?Existence of Star-Products on Exact Symplectic Manifolds?, to appear. · Zbl 0536.58038
[6] FlatoM., and SternheimerD. ?Deformation of Poisson Brackets?, in J.Wolf et al. (eds.), Harmonic Analysis and Representation of Semi Simple Lie Group, Reidel, Dordrecht, 1980, pp. 385-448.
[7] GuttS., Ann. Inst. Poincaré 33, 1-31 (1981).
[8] LichnerowiczA., Ann. Inst. Fourier 32, 157-209 (1982).
[9] MoyalJ.E., Proc. Cambridge Phil. Soc. 45, 99-124 (1949). · doi:10.1017/S0305004100000487
[10] VeyJ.. Comm. Math. Helv. 50, 421-454 (1975). · Zbl 0351.53029 · doi:10.1007/BF02565761
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.