Local symmetries and conservation laws. (English) Zbl 0534.58005

A survey article intended for specialists in mathematical physics as an introduction to the geometric theory of nonlinear partial differential equations. Recently, a vast amount of experimental material has been accumulated in the literature on symmetries and conservation laws, and this is an attempt to bring it together on the foundation of the author’s theory, which comprises geometry of jet manifolds and infinitely prolonged differential equations equipped with an analogue of contact structure, and the calculus of the so-called \({\mathcal C}-differential\) operators (generalizing the notion of full derivatives). In Section 2, Lie’s classical theory of symmetries is described in modern terms. In Section 3, it is extended to a theory of higher symmetries. In Section 4, the notion of a conservation law is shown to have homological nature and the machinery of algebraic topology (complexes, homology, spectral sequences) is shown to be relevant. Throughout the text, ample motivations of the concepts introduced are given. Differential geometric and algebraic-topological considerations are widely used; however, the paper is written to be comprehensible to a physicist who can get useful algorithms for computation of symmetries and conservation laws, converting the former into the latter and vice versa (via generalized direct and inverse Noether’s theorems), finding invariant and partially invariant (with respect to a Lie algebra of higher symmetries) solutions of differential equations, and generating new solutions from the known ones. As an example, the Burgers’ equation is most extensively treated; some interesting remarks pertain also to the heat, Laplace and Cauchy- Riemann equations.
Reviewer: S.V.Duzhin


58A20 Jets in global analysis
58-02 Research exposition (monographs, survey articles) pertaining to global analysis
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35Q99 Partial differential equations of mathematical physics and other areas of application
58A12 de Rham theory in global analysis
58J70 Invariance and symmetry properties for PDEs on manifolds
Full Text: DOI


[1] DhoogheP.: ?Les transformations de contact sur un espace fibré des jets d’application?,C.R. Acad. Sci. 287 (1978), A1125-A1128.
[2] GardnerC. S.: ?Korteweg-de Vries equation and generalisation. IV: The Korteweg-de Vries equation as a Hamiltonian system?,J. Math. Phys. 12 (1971), 1548-1551. · Zbl 0283.35021 · doi:10.1063/1.1665772
[3] IbragimovN. H. and AndersonR. L.: ?Lie-Bäcklund tangent transformations?,J. Math. Anal. Appl. 59 (1977), 145-162. · Zbl 0355.35004 · doi:10.1016/0022-247X(77)90098-1
[4] KumeiS.: ?Invariance transformations, invariance group transformations and invariance groups of the sine-Gordon equation?,J. Math. Phys. 16 (1975), 2461-2468. · doi:10.1063/1.522487
[5] KupershmidtB.: ?On geometry of jet manifolds?,Uspehi Mat. Nauk. 30 (1975), 211-212 (in Russian).
[6] KupershmidtB.: ?Geometry of jet bundles and the Structure of Lagrangian and Hamiltonian formalisms?,Lecture Notes in Math., Vol 775, Springer-Verlag, New York, 1980, pp. 162-217.
[7] LaxP. D.: ?Integrals of nonlinear equations of evolution and solitary waves?,Comm. Pure Appl. Math. 21 (1968), 467-490. · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[8] LychaginV. V.: ?Local classification of nonlinear first-order partial differential equations?,Uspehi Mat. Nauk. 30 (1975), 101-171. (English translation inRussian Math. Surveys 3 (1975), 105-176).
[9] LychaginV. V.: ?Geometric singularities of solutions of nonlinear differential equations?,Dokl. Akad. Nauk. SSSR 261 (1981), 1299-1303 (in Russian); 680-685 (English).
[10] LychaginV. V.: ?Geometry and topology of shock waves?,Dokl. Akad. Nauk. SSSR 264 (1982), 551-555 (in Russian); 685-689 (English).
[11] MarsdenJ. and WeinsteinA.: ?Reduction of symplectic manifolds with symmetry?,Rep. Math. Phys. 5 (1974), 121-130. · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[12] MiuraR. M., GardnerC. S., and KruskalM. D.: ?Korteweg-de Vries equation and generalisations. II: Existence of conservation laws and constants of motion?,J. Math. Phys. 9 (1968), 1204-1209. · Zbl 0283.35019 · doi:10.1063/1.1664701
[13] OlverP.: ?Symmetry groups and group invariant solutions of partial differential equations?,J. Diff. Geom. 14 (1979), 497-542. · Zbl 0437.58024
[14] OttersonP. and SvetlichnyG.: ?On derivative-dependent infinitesimal deformations of differential maps?,J. Diff. Eq. 36 (1981), 270-294. · doi:10.1016/0022-0396(80)90067-4
[15] OvsiannikovL. V.:Group Analysis of Differential Equations, Nauka, Moscow, 1978 (English translation: Academic Press, 1982).
[16] Pommaret, J.-F.:Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, 1978. · Zbl 0418.35028
[17] NovikovS. P. (ed.):Soliton Theory, Nauka, Moscow, 1980.
[18] TsujishitaT.: ?On variation bicomplexes associated to differential equations?,Osaka J. Math. 19 (1982), 311-363. · Zbl 0524.58041
[19] VinogradovA. M.: ?On the algebra-geometric foundations of Lagrangian field theory?,Dokl. Akad. Nauk. SSSR 236 (1977), 284-287 (English translation inSoviet Math. Dokl. 18 (1977), 1200-1204.
[20] VinogradovA. M.: ?A spectral sequence associated with a nonlinear differential equation and algebrageometric foundations of Lagrangian field theory with constraints?,Dokl. Akad. Nauk. SSSR 238 (1978), 1028-1031 (English translation inSoviet Math. Dokl. 19 (1978), 144-148).
[21] VinogradoyA. M.: ?The Theory of higher infinitesimal symmetries of nonlinear partial differential equations?,Dokl. Akad. Nauk. SSSR 248 (1979), 274-278 (English translation inSoviet Math. Dokl. 20 (1979), 985-990).
[22] VinogradovA. M.: ?Geometry of nonlinear differential equations?,Itogi Nauki i Tekniki, VINITI, Ser. ?Problemy Geometrii? 11 (1980), 89-134 (English translation inJ. Soviet Math. 17 (1981), 1624-1649).
[23] VinogradovA. M.: ?The category of nonlinear differential equations?, inEquations on manifolds, Izdat. Voronezh. Gosudarstv. Universitet, Voronezh, 1982, pp. 26-51 (in Russian).
[24] Vinogradov, A. M.: ?TheC-spectral sequence, Lagrangian formalism and conservation laws?,J. Math. Anal. Appl. (1984) to appear. · Zbl 0548.58015
[25] VinogradovA. M. and Krasil’scikI. S.: ?A Method of computing higher symmetries of nonlinear evolution equations, and nonlocal symmetries?,Dokl. Akad. Nauk. SSSR 253 (1980), 1289-1293 (English translation inSoviet Math. Dokl. 22 (1980), 235-239).
[26] WahlquistH. D. and EstabrookF. B.: ?Prolongation structures on nonlinear evolution equations?,J. Math. Phys. 16 (1975), 1-7. · Zbl 0298.35012 · doi:10.1063/1.522396
[27] ZakharovV. E. and FaddeevL. D.: ?Korteweg-de Vries equation: a completely integrable Hamiltonian system?,Funkt. Anal. Appl. 5 (1971), 18-27 (Russian); 280-287 (English).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.