×

Malliavin’s calculus and stochastic integral representations of functionals of diffusion processes. (English) Zbl 0542.60055

Let F be a Fréchet differentiable function on the space C[0,1] with continuous paths, with Fréchet derivative \(dF(b)(u)=\int^{1}_{0}u(s)\lambda^ F(ds;b)\) for b and u in C[0,1]. If \(B=\{B(t)| 0\leq t\leq 1\}\) is a Brownian motion and \(\beta_ t=\sigma \{B(s)| o\leq s\leq t\}\) and \(EF(B)=0\), Clark’s formula states that \(F(b)=\int^{1}_{0}E\{\lambda^ F((s,1],\cdot)| \beta_ s\}dB(s)\). This paper extends Clark’s formula to functionals F which are weakly H-differentiable in the sense of Shigekawa. For such F, \[ E\{F(b)\int^{1}_{0}<\alpha(s),dB(s)>\}=E\{\int^{1}_{0}<DF(b)'(s),\;alpha(s)>ds\} \] for all bounded, \(\beta_ t\)-adapted processes \(\alpha\) (s), where DF(b)(s), \(o\leq s\leq 1\), denotes the weak H-derivative of F. Clark’s formula is a simple consequence of this result. A simple proof of this result is given using Stroock’s development of the Malliavin calculus. Malliavin calculus techniques are also used to derive U. G. Haussmann’s [SIAM J. Control Optimization 16, 252-269 (1978; Zbl 0375.60070)] stochastic integral representation of a functional F(y) of the diffusion \(dy=m(t,y)dt+\sigma(t,y)dB\). In doing this, it is shown that y(t,B) is weakly H-differentiable if m and \(\sigma\) have bounded, continuous first derivatives in y.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J65 Brownian motion

Citations:

Zbl 0375.60070
Full Text: DOI

References:

[1] Bismut J.M., Z. Wahrscheinlichkeitstheorie verw. Gebiete 56 pp 469– (1981) · Zbl 0445.60049 · doi:10.1007/BF00531428
[2] Clark J.M.C., Ann. Math. Stat 41 pp 1281– (1970)
[3] Davis M.H.A., Math. Proc. Camb. Phil. Soc 87 pp 157– (1980) · Zbl 0424.60063 · doi:10.1017/S0305004100056590
[4] Doob J.L., Stochastic Processes (1953)
[5] Haussmann U., Siam J. Control and Opt 16 pp 252– (1978) · Zbl 0375.60070 · doi:10.1137/0316016
[6] Haussmann U., Stochastics 3 pp 17– (1979) · Zbl 0427.60056 · doi:10.1080/17442507908833134
[7] Liptser R.S., Statistics of Random Processes 1 (1977) · Zbl 0364.60004 · doi:10.1007/978-1-4757-1665-8
[8] Malliavin P., Proceedings of the International Conference on Stochastic Differential Equations of Kyoto pp 195– (1978)
[9] Stroock D.W., Math. Systems Th 14 pp 25– (1981) · Zbl 0474.60061 · doi:10.1007/BF01752389
[10] Stroock D.W., J. Fund. Anal 44 pp 212– (1981) · Zbl 0475.60060 · doi:10.1016/0022-1236(81)90011-2
[11] Shigekawa I., J. Math. Kyoto Univ 20 (2) pp 263– (1980)
[12] Friedman A., Stochastic Differential Equations and Applications 1 (1976) · Zbl 0323.60057
[13] Ikeda N., Stochastic Differential Equations and Diffusion Processes (1981) · Zbl 0495.60005
[14] Kusuoka S., in: Proceedings of the 1 (1982) · Zbl 0515.60068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.