Gerstenhaber, M.; Schack, S. D. On the deformation of algebra morphisms and diagrams. (English) Zbl 0544.18005 Trans. Am. Math. Soc. 279, 1-50 (1983). Taking into consideration the similarity between the formal aspects of the deformation theories of complex manifolds and associative algebras, this paper links both of them with a deformation theory for diagrams (a diagram being a functor from a poset to the category of associative algebras) and proves (looking at Yoneda and Hochschild cohmology theories) a cohomology comparison theorem which partially explains the analogy. Reviewer: G.Hoff Cited in 4 ReviewsCited in 61 Documents MathOverflow Questions: Deformation of (locally) ringed spaces and of their abelian categories of modules MSC: 18G25 Relative homological algebra, projective classes (category-theoretic aspects) 16S80 Deformations of associative rings 55N35 Other homology theories in algebraic topology 18G10 Resolutions; derived functors (category-theoretic aspects) 32G05 Deformations of complex structures 16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.) Keywords:Yoneda cohomology; deformation; diagram; associative algebras; Hochschild cohmology; cohomology comparison theorem PDF BibTeX XML Cite \textit{M. Gerstenhaber} and \textit{S. D. Schack}, Trans. Am. Math. Soc. 279, 1--50 (1983; Zbl 0544.18005) Full Text: DOI OpenURL References: [1] M. Andre, Rapport sur l’homologie des algèbres commutatives, 3ieme part., \( {\text{\S16}}\), Battelle Inst., Geneva, 1970. [2] Michael Barr, Harrison homology, Hochschild homology and triples, J. Algebra 8 (1968), 314 – 323. · Zbl 0157.04502 [3] Hyman Bass, Algebraic \?-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0174.30302 [4] Hyman Bass, Introduction to some methods of algebraic \?-theory, American Mathematical Society, Providence, R.I., 1974. Expository Lectures from the CBMS Regional Conference held at Colorado State University, Ft. Collins, Colo., August 24-28, 1973; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 20. · Zbl 0384.18008 [5] Patrick J. Fleury, Splittings of Hochschild’s complex for commutative algebras, Proc. Amer. Math. Soc. 30 (1971), 405 – 411. · Zbl 0223.18013 [6] Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. · Zbl 0121.02103 [7] Alfred Frölicher and Albert Nijenhuis, A theorem on stability of complex structures, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 239 – 241. · Zbl 0078.14201 [8] Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267 – 288. · Zbl 0131.27302 [9] Murray Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59 – 103. · Zbl 0123.03101 [10] Murray Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1 – 19. · Zbl 0147.28903 [11] Murray Gerstenhaber, On the deformation of rings and algebras. III, Ann. of Math. (2) 88 (1968), 1 – 34. · Zbl 0182.05902 [12] Murray Gerstenhaber, On the deformation of sheaves of rings, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 149 – 157. · Zbl 0213.22802 [13] Murray Gerstenhaber, On the deformation of rings and algebras. IV, Ann. of Math. (2) 99 (1974), 257 – 276. · Zbl 0281.16016 [14] D. K. Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962), 191 – 204. · Zbl 0106.25703 [15] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58 – 67. · Zbl 0063.02029 [16] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. (2) 75 (1962), 146 – 162. · Zbl 0112.38404 [17] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963), 79 – 94. · Zbl 0173.33101 [18] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328 – 466. · Zbl 0128.16901 [19] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43 – 76. · Zbl 0128.16902 [20] S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans. Amer. Math. Soc. 128 (1967), 41 – 70. · Zbl 0156.27201 [21] Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. · Zbl 0818.18001 [22] Albert Nijenhuis, A Lie product for the cohomology of subalgebras with coefficients in the quotient, Bull. Amer. Math. Soc. 73 (1967), 962 – 967. · Zbl 0153.36105 [23] Albert Nijenhuis and R. W. Richardson Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175 – 179. · Zbl 0153.04402 [24] R. W. Richardson Jr., A rigidity theorem for subalgebras of Lie and associative algebras, Illinois J. Math. 11 (1967), 92 – 110. · Zbl 0147.28202 [25] Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967 – 1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. [26] S. D. Schack, On the deformation of an algebra homomorphism, Thesis, Univ. of Pennsylvania, 1980. [27] Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208 – 222. · Zbl 0167.49503 [28] D. Sundararaman, Moduli, deformations and classifications of compact complex manifolds, Research Notes in Mathematics, vol. 45, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. · Zbl 0435.32015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.