×

Linearization of second-order nonlinear oscillation theorems. (English) Zbl 0544.34024

Für eine ungedämpfte nichtlineare Schwingungsgleichung mit zeitabhängigem Koeffizient werden Kriterien für ein oszilierendes Verhalten zusammengestellt. Ausgehend von neueren Ergebnissen des linearen Falls wird eine Erweiterung auf bestimmte Klassen der nichtlinearen Rückstellfunktion durchgeführt.
Reviewer: H.J.Bangen

MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643 – 647. · Zbl 0065.32001
[2] John H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415 – 509. · Zbl 0213.10801
[3] S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Časopis Sloven Akad. Vied. 11 (1961), 250-255. (Czech) · Zbl 0108.09103
[4] Štefan Belohorec, Two remarks on the properties of solutions of a nonlinear differential equation, Acta Fac. Rerum Natur. Univ. Comenian. Math. 22 (1969), 19 – 26.
[5] G. J. Butler, On the oscillatory behaviour of a second order nonlinear differential equation, Ann. Mat. Pura Appl. (4) 105 (1975), 73 – 92. · Zbl 0307.34029
[6] G. J. Butler, Oscillation theorems for a nonlinear analogue of Hill’s equation, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 159 – 171. · Zbl 0341.34018
[7] G. J. Butler, Hille-Wintner type comparison theorems for second-order ordinary differential equations, Proc. Amer. Math. Soc. 76 (1979), no. 1, 51 – 59. · Zbl 0415.34032
[8] G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), no. 1, 190 – 200. · Zbl 0424.34033
[9] W. J. Coles, Oscillation criteria for nonlinear second order equations, Ann. Mat. Pura Appl. (4) 82 (1969), 123 – 133. · Zbl 0188.15304
[10] W. J. Coles and D. Willett, Summability criteria for oscillation of second order linear differential equations, Ann. Mat. Pura Appl. (4) 79 (1968), 391 – 398. · Zbl 0183.37001
[11] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. · Zbl 0224.34003
[12] Lynn Erbe, Oscillation theorems for second order nonlinear differential equations., Proc. Amer. Math. Soc. 24 (1970), 811 – 814. · Zbl 0194.12102
[13] L. Erbe, Oscillation criteria for second order nonlinear differential equations, Ann. Mat. Pura Appl. (4) 94 (1972), 257 – 268. · Zbl 0296.34026
[14] Philip Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389 – 400. · Zbl 0048.06602
[15] Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. · Zbl 0123.21502
[16] I. V. Kamenev, Certain specifically nonlinear oscillation theorems, Mat. Zametki 10 (1971), 129 – 134 (Russian).
[17] I. V. Kamenev, Oscillation criteria, connected with averaging, for the solutions of second order ordinary differential equations, Differencial\(^{\prime}\)nye Uravnenija 10 (1974), 246 – 252, 371 (Russian).
[19] V. Komkov, A technique for the detection of oscillation of second order ordinary differential equations, Pacific J. Math. 42 (1972), 105 – 115. · Zbl 0241.34038
[20] Man Kam Kwong, On certain Riccati integral equations and second-order linear oscillation, J. Math. Anal. Appl. 85 (1982), no. 2, 315 – 330. · Zbl 0504.34019
[21] Man Kam Kwong and James S. W. Wong, On an oscillation theorem of Belohorec, SIAM J. Math. Anal. 14 (1983), no. 3, 474 – 476. · Zbl 0543.34025
[22] Man Kam Kwong and James S. W. Wong, On the oscillation and nonoscillation of second order sublinear equations, Proc. Amer. Math. Soc. 85 (1982), no. 4, 547 – 551. · Zbl 0503.34022
[23] Man Kam Kwong and James S. W. Wong, An application of integral inequality to second order nonlinear oscillation, J. Differential Equations 46 (1982), no. 1, 63 – 77. · Zbl 0503.34021
[24] Man Kam Kwong and A. Zettl, Integral inequalities and second order linear oscillation, J. Differential Equations 45 (1982), no. 1, 16 – 33. · Zbl 0498.34022
[25] Man Kam Kwong and A. Zettl, Asymptotically constant functions and second order linear oscillation, J. Math. Anal. Appl. 93 (1983), no. 2, 475 – 494. · Zbl 0525.34026
[26] J. W. Macki and J. S. W. Wong, Oscillation theorems for linear second order ordinary differential equations, Proc. Amer. Math. Soc. 20 (1969), 67 – 72. · Zbl 0181.09701
[27] Lawrence Markus and Richard A. Moore, Oscillation and disconjugacy for linear differential equations with almost periodic coefficients, Acta Math. 96 (1956), 99 – 123. · Zbl 0071.08302
[28] Hiroshi Onose, Oscillation criteria for second order nonlinear differential equations, Proc. Amer. Math. Soc. 51 (1975), 67 – 73. · Zbl 0317.34024
[29] R. V. Petropavlovskaya, On oscillation of solutions of the equation \?”+\?(\?)\?=0, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 29 – 31 (Russian).
[30] C. R. Putnam, Note on some oscillation criteria, Proc. Amer. Math. Soc. 6 (1955), 950 – 952. · Zbl 0067.06202
[31] Miloš Ráb, Kriterien für die Oszillation der Lösungen der Differentialgleichung [\?(\?)\?\(^{\prime}\)]\(^{\prime}\)+\?(\?)\?=0, Časopis Pěst. Mat. 84 (1959), 335-370; erratum 85 (1959), 91 (German, with Czech and Russian summaries). · Zbl 0087.29505
[32] Svatoslav Staněk, A note on the oscillation of solutions of the differential equation \?\(^{\prime}\)\(^{\prime}\)=\?\?(\?)\? with a periodic coefficient, Czechoslovak Math. J. 29(104) (1979), no. 2, 318 – 323. · Zbl 0416.34037
[33] W. R. Utz, Properties of solutions of \?\(^{\prime}\)\(^{\prime}\)+\?(\?)\?²\(^{n}\)\(^{-}\)\textonesuperior =0, Monatsh. Math. 66 (1962), 55 – 60. · Zbl 0101.30603
[34] Paul Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10 (1965), 439 – 441. · Zbl 0131.08902
[35] D. Willett, On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math. 21 (1969), 175 – 194. · Zbl 0174.13701
[36] D. Willett, Classification of second order linear differential equations with respect to oscillation, Advances in Math. 3 (1969), 594 – 623. · Zbl 0188.40101
[37] Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115 – 117. · Zbl 0032.34801
[38] James S. W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1968), 207 – 234 (1969). · Zbl 0184.12202
[39] James S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197 – 215. · Zbl 0195.37402
[40] James S. W. Wong, A second order nonlinear oscillation theorem, Proc. Amer. Math. Soc. 40 (1973), 487 – 491. · Zbl 0278.34030
[41] James S. W. Wong, Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Acad. Sinica 3 (1975), no. 2, 283 – 309. · Zbl 0316.34035
[42] James S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339 – 360. · Zbl 0295.34026
[43] M. Yelchin, Sur les conditions pour qu’une solution d’un système linéaire du second ordre possède deux zéros, C. R. (Doklady) Acad. Sci. URSS (N.S.) 51 (1946), 573 – 576 (French). · Zbl 0063.09068
[44] M. Zlamal, Oscillation criteria, Časopis Pěst. Mat. 75 (1950), 213-217.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.