Kojecká, Jitka On phases of accompanying spaces to a linear two-dimensional space of functions with a continuous first derivative. (English) Zbl 0551.34003 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 22, 53-60 (1983). This paper deals with relations between phases of two accompanying spaces \(P_{\rho}[\alpha,\beta]\) and \(P_{\sigma}[\gamma,\delta]\) to the space \(S\subset C_ 1(i)\) from the point of view of Borůvka’s theory on transformations of integrals of the second order differential equations [O. Borůvka, Lineare Differentialtransformationen 2. Ordnung (1967; Zbl 0153.112)]. Reviewer: H.Haruki Cited in 1 Document MSC: 34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. 34C20 Transformation and reduction of ordinary differential equations and systems, normal forms Keywords:phases; accompanying spaces; Borůvka’s theory; transformations of integrals; second order differential equations Citations:Zbl 0153.112 PDF BibTeX XML Cite \textit{J. Kojecká}, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 22, 53--60 (1983; Zbl 0551.34003) Full Text: EuDML References: [1] Borůvka O.: Lineare Differentialtransformationen 2. Ordnung. VEB Deutscher Verlag der Wissenschaften. Berlin 1967. · Zbl 0153.11201 [2] Stach K.: Die allgemeinen Eigenschaften der Kummerschen Transformationen zweidimensionaler Räume von stetigen Funktionen. Publ. Fac. Sci. UJEP, Brno, 478, 1966. · Zbl 0256.34007 [3] Kojecká J.: Lineare zweidimensionale Räume von stetigen Funktionen mit stetigen ersten Ableitungen. ACTA UP Olomouc, T 45 (1974). [4] Kojecká J.: Accompanying spaces to a linear two-dimensional space of continuous functions with a continuous first derivative. ACTA UP Olomouc, T. 73 (1982). · Zbl 0534.34037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.