×

Curvature measures and random sets. II. (English) Zbl 0554.60017

[For part I see Math. Nachr. 119, 327-339 (1984; Zbl 0553.60014).]
In choosing models of stochastic geometry three general problems play a role which are closely connected with each other: 1. Construction of the random geometric objects under consideration; 2. Measurabilities; 3. Geometric behaviour. In the present paper second order local geometric properties of random subsets of \(R^ d\) are of interest. These properties are described by signed curvature measures in a measure geometric context.
The theory of point processes on general spaces (here on the space of subsets with positive reach) provides an appropriate framework for solving construction and measurability problems. Mean value relations for random curvature measures associated with such set processes are derived by means of invariance properties. Ergodic interpretations of the curvature densities are also given. The appendix provides auxiliary results for random signed Radon measures in locally compact separable Hausdorff spaces.

MSC:

60D05 Geometric probability and stochastic geometry
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Citations:

Zbl 0553.60014
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alexandrov, P. S., Introduction to set theory and general topology (1977), Moscow: Nauka, Moscow
[2] Davy, P., Projected thick sections through multidimensional particle aggregates, J. Appl. Probab., 13, 714-722 (1976) · Zbl 0349.60011
[3] Fava, N. A.; Santal, L. A., Random processes of manifolds in R^n, Z. Wahrscheinlichkeitstheor. Verw. Geb., 50, 85-96 (1979) · Zbl 0397.60023
[4] Federer, H., Curvature measures, Trans. Am. Math. Soc., 93, 418-491 (1959) · Zbl 0089.38402
[5] Federer, H., Geometric measure theory (1969), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0176.00801
[6] Hadwiger, H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (1957), Berlin- Göttingen Heidelberg: Springer, Berlin- Göttingen Heidelberg · Zbl 0078.35703
[7] Halmos, P., Measure theory (1974), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0283.28001
[8] Hewitt, E.; Ross, A., Abstract harmonic analysis, I (1963), Berlin-Göttingen-Heidelberg: Springer, Berlin-Göttingen-Heidelberg · Zbl 0115.10603
[9] Kallenberg, O., Random measures (1983), London: Akademie-Verlag, London · Zbl 0544.60053
[10] Kellerer, H. G., Minkowski functionals of Poisson point processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., 67, 63-84 (1984) · Zbl 0529.60047
[11] Kendall, D. G.; Harding, E. F.; Kendall, D. G., Foundations of a theory of random sets, Stochastic geometry, 322-376 (1974), New York: Wiley, New York · Zbl 0275.60068
[12] Kerstan, J.; Liese, F., Zur Existenz bedingter Verteilungsgesetze, Math. Nachr., 61, 279-310 (1974) · Zbl 0287.60006
[13] Kerstan, J.; Matthes, K.; Mecke, J., Infinitely divisible point processes (1978), Chichester-New York-Brisbane-Toronto: Wiley, Chichester-New York-Brisbane-Toronto · Zbl 0383.60001
[14] Matheron, G., Random sets and integral geometry (1975), New York-London-Sydney-Toronto: Wiley, New York-London-Sydney-Toronto · Zbl 0321.60009
[15] Mecke, J., A remark on the construction of random measures, Math. Proc. Cambridge Philos. Soc., 85, 111-115 (1979) · Zbl 0411.60053
[16] Neveu, J., Processes ponctuels, 249-447 (1977), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York
[17] Nguyen, X. X.; Zessin, H., Ergodic theorems for spatial processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., 48, 133-158 (1979) · Zbl 0397.60080
[18] Ripley, B. D., Locally finite random sets. Foundations of point processes theory, Ann. Prob., 4, 983-994 (1976) · Zbl 0359.60066
[19] Schneider, R., Parallelmengen mit Vielfachheit und Steiner-Formeln, Geometria Dedic., 9, 111-127 (1980) · Zbl 0435.52004
[20] Stoyan, D., Proofs of some fundamental formulas of stereology for non-Poissonian grain models, Math. Operationsforsch. Stat., Ser. Optim., 10, 575-583 (1979) · Zbl 0434.60013
[21] Weil, W.; Ambartzumjan, R. V.; Weil, W., Densities of quermassintegrals for stationary random sets, Stoch. Geom., Geom. Stat., Stereology (1984), Leipzig: Teubner, Leipzig · Zbl 0548.60017
[22] Weil, W., Stereological results for curvature measures, Bull. Inst. Internat. Stat., 50, 872-883 (1983) · Zbl 0567.60013
[23] Weil, W.; Wieacker, J. A., Densities for stationary random sets and point processes, Adv. Appl. Probab., 16, 324-346 (1984) · Zbl 0546.60014
[24] Wieacker, J.A.: Translative stochastische Geometrie der konvexen Körper. Thesis, Albert-Ludwig-Universität Freiburg (1982)
[25] Zähle, M., Krümmungsmaße bei zufälligen Mengen, Geobild (1982), Friedrich-Schiller: Universität Jena, Friedrich-Schiller
[26] Zähle, M.; Ambartzumjan, R. V.; Weil, W., Properties of signed curvature measures, Stoch. Geom., Geom. Stat., Stereology (1984), Leipzig: Teubner, Leipzig · Zbl 0564.60011
[27] Zähle, M., Curvature measures and random sets, I, Math. Nachr., 119, 327-339 (1984) · Zbl 0553.60014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.