Chang, Sun-Yung A.; Fefferman, Robert Some recent developments in Fourier analysis and \(H^ p\)-theory on product domains. (English) Zbl 0557.42007 Bull. Am. Math. Soc., New Ser. 12, 1-43 (1985). This article is a survey of results in ”multi-parameter” harmonic analysis, equivalently, harmonic analysis on product spaces. The prototypical such space is the bidisc, and the authors concentrate on this example (equivalently, on the product of half-planes). The article begins with a brief overview of the ”classical theory” of the 1970’s which was initiated by papers of Stein, Stein/Weiss, and C. Fefferman/Stein; the theory was developed by others too numerous to mention. The article then surveys in more detail the basic developments in the multi-parameter theory: differentiation theory, maximal functions, covering lemmas, singular integrals, \(H^ p\) theory, functions of bounded mean oscillation, the atomic decomposition of \(H^ p\) functions, unconditional bases for \(H^ 1\), the corona problem, and interpolation of operators. The authors are two of the principal workers in the multi-parameter theory. Thus they are very well qualified to write this survey. They are careful to point out the differences between the one-parameter and multi- parameter theories; this is a real blessing for the novice. The paper is well written. It is a welcome guide to the often difficult and technical literature connected with this subject. Reviewer: S.Krantz Cited in 4 ReviewsCited in 126 Documents MSC: 42B30 \(H^p\)-spaces 32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25 Maximal functions, Littlewood-Paley theory Keywords:product spaces; maximal functions; singular integrals; \(H^ p\); bounded mean oscillation; corona problem; interpolation of operators PDF BibTeX XML Cite \textit{S.-Y. A. Chang} and \textit{R. Fefferman}, Bull. Am. Math. Soc., New Ser. 12, 1--43 (1985; Zbl 0557.42007) Full Text: DOI OpenURL References: [1] Albert Baernstein II, Univalence and bounded mean oscillation, Michigan Math. J. 23 (1976), no. 3, 217 – 223 (1977). · Zbl 0331.30014 [2] A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356 – 365. · Zbl 0103.33402 [3] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. · Zbl 0344.46071 [4] Alain Bernard, Espaces \?\textonesuperior de martingales à deux indices. Dualité avec les martingales de type ”BMO”, Bull. Sci. Math. (2) 103 (1979), no. 3, 297 – 303 (French, with English summary). · Zbl 0403.60047 [5] S. V. Bockarev, On a basis in the space of functions continuous in the closed disc and analytic inside it, Soviet Math. Dokl. 15 (1974), 1195-1216. · Zbl 0313.46024 [6] D. L. Burkholder, Martingale theory and harmonic analysis in Euclidean spaces, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 283 – 301. [7] D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class \?^{\?}, Trans. Amer. Math. Soc. 157 (1971), 137 – 153. · Zbl 0223.30048 [8] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249 – 304. · Zbl 0223.60021 [9] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113 – 190. · Zbl 0204.13703 [10] A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47 – 54. · Zbl 0035.18901 [11] A. P. Calderón, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68 (1950), 55 – 61. · Zbl 0035.18903 [12] Alberto-P. Calderón, An atomic decomposition of distributions in parabolic \?^{\?} spaces, Advances in Math. 25 (1977), no. 3, 216 – 225. · Zbl 0379.46050 [13] A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101 – 171. , https://doi.org/10.1016/S0001-8708(77)80016-9 A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85 – 139. · Zbl 0047.10201 [14] Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547 – 559. · Zbl 0112.29702 [15] L. Carleson, The Corona problem (Proc. 15th Scandinavian Congress, 968 (1970). Lecture Notes in Math., Springer, 118. · Zbl 0195.42104 [16] L. Carleson, A counterexample for measures bounded on H, Mittag-Leffler Report No. 7, 1974. [17] Lennart Carleson, An explicit unconditional basis in \?\textonesuperior , Bull. Sci. Math. (2) 104 (1980), no. 4, 405 – 416 (English, with French summary). · Zbl 0495.46020 [18] L. Carleson, BMO in 10 years, Proc. Scandinavian Congress Lecture Notes, 1981. · Zbl 0495.46021 [19] Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no. 2, 82 – 89. , https://doi.org/10.1007/BF02392413 Donald E. Marshall, Subalgebras of \?^{\infty } containing \?^{\infty }, Acta Math. 137 (1976), no. 2, 91 – 98. · Zbl 0334.46061 [20] Sun-Yung A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3, 613 – 620. · Zbl 0401.28004 [21] Sun-Yung A. Chang, Two remarks about \?\textonesuperior and BMO on the bidisc, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 373 – 393. [22] Sun-Yung A. Chang and Z. Ciesielski, Spline characterizations of \?\textonesuperior , Studia Math. 75 (1983), no. 2, 183 – 192. · Zbl 0531.46040 [23] Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of \?\textonesuperior with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179 – 201. · Zbl 0451.42014 [24] Sun-Yung A. Chang and Robert Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455 – 468. · Zbl 0513.42019 [25] Z. Ciesielski, Properties of the orthonormal Franklin system. II, Studia Math. 27 (1966), 289 – 323. · Zbl 0148.04702 [26] Ronald R. Coifman, A real variable characterization of \?^{\?}, Studia Math. 51 (1974), 269 – 274. · Zbl 0289.46037 [27] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241 – 250. · Zbl 0291.44007 [28] R. R. Coifman, Y. Meyer and E. M. Stein, Un nouvel espace functionnel adapte a l’etude des operateurs definis par des integrales singulieres (preprint). [29] Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569 – 645. · Zbl 0358.30023 [30] Antonio Córdoba, Maximal functions, covering lemmas and Fourier multipliers, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 29 – 50. [31] A. Cordoba and R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102 (1975), no. 1, 95 – 100. · Zbl 0324.28004 [32] A. Córdoba and R. Fefferman, On differentiation of integrals, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 6, 2211 – 2213. · Zbl 0374.28002 [33] Burgess Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), no. 1, 211 – 233. · Zbl 0438.42010 [34] Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587 – 588. · Zbl 0229.46051 [35] Charles Fefferman, Estimates for double Hilbert transforms, Studia Math. 44 (1972), 1 – 15. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. · Zbl 0239.44006 [36] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107 – 115. · Zbl 0222.26019 [37] C. Fefferman and E. M. Stein, \?^{\?} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137 – 193. · Zbl 0257.46078 [38] C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between \?^{\?} spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75 – 81. · Zbl 0285.41006 [39] R. Fefferman, Bounded mean oscillation on the polydisk, Ann. of Math. (2) 110 (1979), no. 2, 395 – 406. · Zbl 0429.32016 [40] R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math. 103 (1981), no. 1, 33 – 40. · Zbl 0475.42019 [41] R. Fefferman, The atomic decomposition of \?\textonesuperior in product spaces, Adv. in Math. 55 (1985), no. 1, 90 – 100. · Zbl 0606.42016 [42] R. Fefferman, Some weighted norm inequalities for Córdoba’s maximal function, Amer. J. Math. 106 (1984), no. 5, 1261 – 1264. · Zbl 0575.42022 [43] Robert Fefferman and Elias M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117 – 143. · Zbl 0517.42024 [44] G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. · Zbl 0508.42025 [45] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. · Zbl 0469.30024 [46] John B. Garnett and Peter W. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), no. 2, 351 – 371. · Zbl 0516.46021 [47] R. Gundy, Maximal function characterizations of H, Lecture Notes in Math., Springer-Verlag, 1978. [48] R. Gundy, Inégalités pour martingales à un et deux indices l’espace H, L’École d’ete de St. Flour, 1978. · Zbl 0427.60046 [49] R. F. Gundy and E. M. Stein, \?^{\?} theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 3, 1026 – 1029. · Zbl 0405.32002 [50] Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227 – 251. · Zbl 0262.44004 [51] Satoru Igari, An extension of the interpolation theorem of Marcinkiewicz, Proc. Japan Acad. 38 (1962), 731 – 734. · Zbl 0196.42901 [52] Björn Jawerth and Alberto Torchinsky, The strong maximal function with respect to measures, Studia Math. 80 (1984), no. 3, 261 – 285. · Zbl 0565.42008 [53] B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 24 (1953), 217-234. · JFM 61.0255.01 [54] Fritz John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391 – 413. · Zbl 0102.17404 [55] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415 – 426. · Zbl 0102.04302 [56] Peter W. Jones, Carleson measures and the Fefferman-Stein decomposition of \?\?\?(\?), Ann. of Math. (2) 111 (1980), no. 1, 197 – 208. · Zbl 0393.30029 [57] P. Jones, L, Acta Math. 150 (1982), 136-152. [58] Peter W. Jones, Interpolation between Hardy spaces, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 437 – 451. [59] K. C. Lin, Thesis, Univ. of California, Los Angeles, 1984. [60] K. C. Lin, H (to appear). [61] Marie-Paule Malliavin and Paul Malliavin, Intégrales de Lusin-Calderon pour les fonctions biharmoniques, Bull. Sci. Math. (2) 101 (1977), no. 4, 357 – 384 (French, with English summary). · Zbl 0386.31005 [62] Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no. 2, 82 – 89. , https://doi.org/10.1007/BF02392413 Donald E. Marshall, Subalgebras of \?^{\infty } containing \?^{\infty }, Acta Math. 137 (1976), no. 2, 91 – 98. · Zbl 0334.46061 [63] Bernard Maurey, Isomorphismes entre espaces \?\(_{1}\), Acta Math. 145 (1980), no. 1-2, 79 – 120 (French). · Zbl 0509.46045 [64] Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577 – 591. · Zbl 0111.09302 [65] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207 – 226. · Zbl 0236.26016 [66] Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591 – 602 (German). · Zbl 0369.30012 [67] J. Privalov, Sur les fonctions conjuguées, Bull. Soc. Math. France 44 (1916), 100-103. · JFM 46.0540.03 [68] H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260 – 276. · Zbl 0289.30027 [69] N. M. Rivière and Y. Sagher, Interpolation between \?^{\infty } and \?\textonesuperior , the real method, J. Functional Analysis 14 (1973), 401 – 409. · Zbl 0295.46056 [70] Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0142.01701 [71] Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19 – 23, 1978. · Zbl 0398.30027 [72] Donald Sarason, Algebras between \?^{\infty } and \?^{\infty }, Spaces of analytic functions (Sem. Functional Anal. and Function Theory, Kristiansand, 1975) Springer, Berlin, 1976, pp. 117 – 130. Lecture Notes in Math., Vol. 512. [73] Elias M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137 – 174. · Zbl 0111.08001 [74] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501 [75] Elias M. Stein, A variant of the area integral, Bull. Sci. Math. (2) 103 (1979), no. 4, 449 – 461 (English, with French summary). · Zbl 0468.42012 [76] Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of \?^{\?}-spaces, Acta Math. 103 (1960), 25 – 62. · Zbl 0097.28501 [77] Jan-Olov Strömberg, Weak estimates on maximal functions with rectangles in certain directions, Ark. Mat. 15 (1977), no. 2, 229 – 240. · Zbl 0376.26007 [78] Jan-Olov Strömberg, A modified Franklin system and higher-order spline systems on \?\(^{n}\) as unconditional bases for Hardy spaces, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 475 – 494. [79] Akihito Uchiyama, A constructive proof of the Fefferman-Stein decomposition of BMO (\?\(^{n}\)), Acta Math. 148 (1982), 215 – 241. · Zbl 0514.46018 [80] N. Th. Varopoulos, BMO functions and the \overline\partial -equation, Pacific J. Math. 71 (1977), no. 1, 221 – 273. N. Th. Varopoulos, A remark on functions of bounded mean oscillation and bounded harmonic functions. Addendum to: ”BMO functions and the \overline\partial -equation” (Pacific J. Math. 71 (1977), no. 1, 221 – 273), Pacific J. Math. 74 (1978), no. 1, 257 – 259. [81] Nicholas Th. Varopoulos, Probabilistic approach to some problems in complex analysis, Bull. Sci. Math. (2) 105 (1981), no. 2, 181 – 224 (English, with French summary). · Zbl 0472.32009 [82] P. Wojtaszczyk, The Franklin system is an unconditional basis in \?\(_{1}\), Ark. Mat. 20 (1982), no. 2, 293 – 300. · Zbl 0534.46038 [83] Thomas H. Wolff, A note on interpolation spaces, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 199 – 204. [84] A. Zygmund, Trigonometric series: Vols. I, II, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. [85] A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092 – 1099. · Zbl 0151.16901 [86] R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, xi, 177 – 202 (French, with English summary). · Zbl 0368.47031 [87] Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371 – 397. · Zbl 0567.47025 [88] J. L. Journé, Vector valued singular integral operators and singular integral operators on product spaces (preprint). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.