Tonti, E. Variational formulation for every nonlinear problem. (English) Zbl 0558.49022 Int. J. Eng. Sci. 22, 1343-1371 (1984). It is shown that for every linear or nonlinear problem, whose solution exists and is unique, one may find many functionals whose minimum is the solution of the problem. They are obtained after a transformation of the given problem into another by the application of an ”integrating operator”: this transforms a differential problem into an integro- differential one. The procedure used to obtain such functionals is straightforward and is described in detail. Examples are exhibited and the numerical effectiveness of the method is tested. The variational formulation so obtained contains the classical formulation as a particular case when it exists. Cited in 1 ReviewCited in 46 Documents MSC: 49Q99 Manifolds and measure-geometric topics 44A45 Classical operational calculus 58E30 Variational principles in infinite-dimensional spaces 47J05 Equations involving nonlinear operators (general) 47B25 Linear symmetric and selfadjoint operators (unbounded) 49S05 Variational principles of physics Keywords:transformation; integrating operator; variational formulation PDF BibTeX XML Cite \textit{E. Tonti}, Int. J. Eng. Sci. 22, 1343--1371 (1984; Zbl 0558.49022) Full Text: DOI References: [1] Adby, P. R.; Dempster, M. A.H., Introduction to Optimization Methods (1974), Chapman and Hall: Chapman and Hall London · Zbl 0351.90054 [2] Anderson, I. M.; Dunchamp, T., J. Math., 102, 781-868 (1980) [3] Atherton, R. W.; Homsy, G. M., Stud. Appl. Math., 54, 31-60 (1975) [4] Collatz, L., The Numerical Treatment of Differential Equations (1960), Springer: Springer Berlin [5] Davis, D. R., Trans. Am. Math. Soc., 30, 736 (1928) [6] Dedecker, P., Bull. Acad. Roy. Belg. Sc., 36, 63-70 (1950) [7] Dedecker, P.; Tulczyjew, W. M., Lect. Notes Math., Vol. 836 (1979) [8] Didenko, V. P., Dokl. Akad. Nauck. SSSR, 240, 736-740 (1978) [9] Douglas, J., Trans. Am. Math. Soc., 50, 71-128 (1941) [10] Evans, G. C., Am. Math. Soc. (1918), (Reprinted by Dover, New York in 1964). [11] Finlayson, B. A., Phys. Fluids, 15, 963-967 (1972) [12] Finlayson, B. A.; Scriven, L. E., J. Heath Mass Transfer, 10, 799-821 (1957) [13] Fung, Y. C., Foundation of Solid Mechanics (1965), Prentice-Hall: Prentice-Hall New York [14] Gurtin, M. E., Q. Appl. Math., 22, 252-256 (1964) [15] Gurtin, M. E., Arch. Rat. Mech. Anal., 13, 179-197 (1963) [16] Havas, P., Suppl. Nuovo Cim., 5, 363-388 (1957) [17] Herrera, H.; Bielak, J., Arch. Rat. Mech. Anal., 53, 149 (1974) [18] Helmholtz, H., Ueber die physikalische bedeutung des Prinzips der kleinsten Wirkung, J. fuer die reine und angew. Matem., 213-222 (1886), (W.A.III, pp. 203-248) · JFM 18.0941.01 [19] Hirsch, A., Math. Ann., 49, 49-72 (1897) [20] Hlavacek, I., Aplik. Matem., 4, 278-297 (1969) [21] Kerner, M., Ann. of Math., 34, 546-572 (1933) [22] Lanczos, C., Linear Differential Operators (1961), Van Nostrand: Van Nostrand Amsterdam · Zbl 0111.08305 [23] Magri, F., Am. Phys., 99, 334-344 (1976) [24] Magri, F., Int. J. Engng Sci., 12, 537-549 (1974) [25] Michlin, S. G., Variational Methods in Mathematical Physics (1964), Pergamon Press: Pergamon Press Oxford [26] Michlin, S. G., The Problem of the Minimum of a Quadratic Functional (1965), Holden Day: Holden Day New York [27] Morse, M., The Calculus of Variations in the Large, ((1932), Verhandlungen des Internationalen Mathematiker-kongress: Verhandlungen des Internationalen Mathematiker-kongress Zurich), 173-183 · JFM 58.0537.01 [28] Morse, M., Bull. Am. Math. Soc., 35, 38-54 (1929) [29] Morse, M.; Feshbach, H., Methods of Theoretical Physics (1953), McGraw-Hill: McGraw-Hill New York · Zbl 0051.40603 [31] Nowinski, J. L., Int. J. Engng Sci., 19, 1377-1390 (1981) [32] Oden, J. T.; Reddy, J. N., Variational Methods in Theoretical Mechanics (1976), Springer Verlag: Springer Verlag Berlin · Zbl 0324.73001 [33] Olver, P. J., (Math. Proc. Camb. Phil. Soc., 88 (1980)), 71-88 [34] Reiss, R.; Haug, E. J., Int. J. Engng Sci., 16, 231-251 (1978) [35] Salov, V. M., Sov. Math. Dokl., iv, 1046-1048 (1963) [36] Santilli, R. M., Foundations of Theoretical Mechanics I: The Inverse Problem of Newtonian Mechanics (1978), Springer Verlag: Springer Verlag Berlin · Zbl 0401.70015 [37] Schaefer, H., Topological Vector Spaces (1978), Springer Verlag: Springer Verlag Berlin [38] Takens, F., J. Diff. Geom., 14, 543-562 (1979) [39] Telega, J. J., J. Inst. Maths. Applic., 24, 175-195 (1979) [40] Tonti, T., Hadronic J., 5, 1404-1450 (1982) [41] Tonti, E., Rend. Acc. Lincei, LII, 350-356 (1972) [42] Tonti, E., Rend. Acc. Lincei, VL, 293-300 (1968) [43] Tonti, E., Rend. Acc. Lincei, LII, 39-56 (1972) [44] (On the Formal Structure of Physical Theories, 1975 (1975), Consiglio Nazionale dell ricerche), preprint: [45] Tonti, E., Appl. Math. Modell., i, 37-60 (1976) [46] Tonti, E., Annali di Matem. Para Appl., XCV, 331-360 (1972) [47] Tonti, E., Bull. Acad. Roy. de Belgique, LV, 262-278 (1969), (second part) [48] Tulczyjew, W. M., Bull. Soc. Math. France, 105, 419-431 (1977) [49] Tulczyjew, W. M., Bull. Acad. Pol. Sc. Ser. Math. Astron. Phys., 24, 1089-1096 (1976) [50] Vainberg, M. M., Variational Methods for the Study of Nonlinear Operators (1964), Holden-Day: Holden-Day New York · Zbl 0122.35501 [51] Vanderbauwhede, A. L., Potential Operators and the Inverse Problem of Classical Mechanics, Hadronic J., 1, 1177-1197 (1978) · Zbl 0431.47033 [52] Volterra, V., Leçons sur les fonctions de ligne (1913), Gauthier Villars: Gauthier Villars Paris · JFM 44.0410.01 [53] Volterra, V., Rend. Acc. Lincei, III, III, 153-158 (1887) [54] Volterra, V., Theory of Functionals and Integrodifferential Equations (1929), (reprinted in 1959 by Dover, New York). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.