×

On the Preisach model for hysteresis. (English) Zbl 0563.35007

The author proves the existence of solutions of parabolic and hyperbolic problems which involve a hysteresis functional.
Reviewer: D.E.Edmunds

MSC:

35A15 Variational methods applied to PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
78A25 Electromagnetic theory (general)
35R10 Partial functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brezis, H., Operateurs Maximaux Monotones et Sémigroupes de Contractions dans les Espaces de Hilbert (1973), North-Holland: North-Holland Amsterdam · Zbl 0252.47055
[2] Enderby, J. A., The domain model of hysteresis: Part 2, Interacting doamins, Trans. Faraday Soc., 52, 102-120 (1956)
[3] Everett, D. H., A general approach to hysteresis: Part 4, An alternative formulation of the domain model, Trans. Faraday Soc., 51, 1551-1557 (1955)
[4] Krasnosel’Skiǐ, M. A., Equations with non-linearities of hysteresis type (Russian)—VII, Int. Konf. Nichtlin. Schwing., Berlin (1975). Int. Konf. Nichtlin. Schwing., Berlin (1975), Abh. Akad. Wiss. DDR, 3, 437-458 (1977), (English abstract in Zentbl. Math. 406, 93032). · Zbl 0406.93032
[5] Krasnosel’Skiǐ, M. A.; Pokrovskiǐ, A. V., Periodic oscillations in systems with relay nonlinearities, Soviet Math. Dokl., 15, 873-877 (1974) · Zbl 0322.93017
[6] Krasnosel’Skiǐ, M. A.; Pokrovskiǐ, A. V., Modelling transducers with hysteresis by means of continuous systems of relays, Soviet Math. Dokl., 17, 447-451 (1976) · Zbl 0344.68033
[7] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéares (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[8] Neel, L., Théorie des lois d’aimantation de Lord Rayleigh, Cah. Phys., 12, 1-20 (1942)
[9] Preisach, F., Über die magnetische Nachwirkung, Z. Phys., 94, 277-302 (1935)
[10] Visintin, A., Histérésis dans les systèmes distribués, C.r. hebd. Séanc. Acad. Sci. Paris, 293, 625-628 (1981) · Zbl 0494.35051
[11] Visintin, A., A model for hysteresis of distributed systems, Annali mat. pura appl., 131, 203-231 (1982) · Zbl 0494.35052
[12] Visintin, A., A phase transition problem with delay, Control and Cybernetics, 11, 5-18 (1982) · Zbl 0522.35089
[13] Visintin, A., Evolution problems with hysteresis in the source term, SIAM J. Appl. Math. (1982), submitted for publication. · Zbl 0618.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.