The Morse-Smale property for a semilinear parabolic equation. (English) Zbl 0581.58026

See the preview in Zbl 0548.58019.


37D15 Morse-Smale systems


Zbl 0548.58019
Full Text: DOI


[1] Agmon, S, Unicité et convexité dans LES problèmes différentiels, Lect. notes univ. of Montreal, (1966) · Zbl 0147.07702
[2] Chaffee, N, Asymptotic behaviour for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions, J. differential equations, 18, 111-134, (1975)
[3] Dieudonné, Foundations of modern analysis, (), 357, Ex. XI.7.3 · Zbl 0967.01024
[4] Hale, J.K, Dynamics in a parabolic equation an example, (), 461-472
[5] Hale, J.K; Magelhães, L.T; Oliva, W.M, An introduction to infinite dimensional dynamical systems—geometric theory, ()
[6] Henry, D, Geometric theory of semilinear parabolic equations, () · Zbl 0456.35001
[7] Lees, M; Protter, M.H, Unique continuation for parabolic differential equations and inequalities, Duke math. J., 28, 369-382, (1961) · Zbl 0143.33301
[8] Lions, J.L; Malgrange, B, Sur l’unicité rétrograde dans LES problèmes mixtes paraboliques, Math. scand., 8, 277-286, (1960) · Zbl 0126.12202
[9] Matano, H, Non increase of the lapnumber of a solution for a one dimensional semilinear parabolic equation, J. fac. sci. univ. Tokyo IA math., 29, No. 2, 401-441, (1982) · Zbl 0496.35011
[10] Pazy, A, Semigroups of linear operators and applications to partial differential equations, () · Zbl 0516.47023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.