Kim, John; Moin, Parviz Application of a fractional-step method to incompressible Navier-Stokes equations. (English) Zbl 0582.76038 J. Comput. Phys. 59, 308-323 (1985). A numerical method for computing three-dimensional, time-dependent incompressible flows is presented. The method is based on a fractional-step, or time-splitting, scheme in conjunction with the approximate- factorization technique. It is shown that the use of velocity boundary conditions for the intermediate velocity field can lead to inconsistent numerical solutions. Appropriate boundary conditions for the intermediate velocity field are derived and tested. Numerical solutions for flows inside a driven cavity and over a backward-facing step are presented and compared with experimental data and other numerical results. Cited in 4 ReviewsCited in 866 Documents MSC: 76D10 Boundary-layer theory, separation and reattachment, higher-order effects 76D05 Navier-Stokes equations for incompressible viscous fluids 76M25 Other numerical methods (fluid mechanics) (MSC2010) Keywords:three-dimensional, time-dependent incompressible flows; fractional-step, or time-splitting, scheme; approximate-factorization technique; velocity boundary conditions; intermediate velocity field; driven cavity; backward-facing step × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Chorin, A. J., J. Comput. Phys., 2, 12 (1967) · Zbl 0149.44802 [2] Steger, J. L.; Kutler, P., AIAA J., 15, 581 (1977) · Zbl 0381.76030 [3] Phillips, N. A., The Atmosphere and Sea in Motion (1959), Rockefeller Inst. Press: Rockefeller Inst. Press New York [4] Chorin, A. J., Math. Comput., 23, 341 (1969) · Zbl 0184.20103 [5] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (1979), North-Holland: North-Holland Amsterdam · Zbl 0426.35003 [6] Beam, R. M.; Warming, R. F., J. Comput. Phys., 22, 87 (1976) · Zbl 0336.76021 [7] Briley, W. R.; McDonald, H., J. Comput. Phys., 24, 428 (1977) [8] Harlow, F. H.; Welch, J. E., Phys. Fluids, 8, 2182 (1965) · Zbl 1180.76043 [9] Leveque, R. L.; Oliger, J., Numerical Analysis Project, ((1981), Computer Science Department, Stanford University: Computer Science Department, Stanford University Stanford, Calif), Manuscript NA-81-16 [10] Lilly, D. K., Mon. Weather Rev., 93, 11 (1965) [11] Moin, P.; Kim, J., J. Comput. Phys., 35, 381 (1980) · Zbl 0425.76027 [12] Kleiser, L.; Schumann, U., (Hirschel, E. H., Proceedings, Third GAMM-Conference on Numerical Methods in Fluid Mechanics (1980)), 165-173, Braunschweig [13] Dorr, F. W., SIAM Rev., 12, 2, 248 (1970) · Zbl 0208.42403 [14] Chorin, A. J., The Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid, (AEC Research and Development Report, NYO-1480-82 (1967), New York University: New York University New York) · Zbl 0168.46501 [15] Pearson, C. E., (Report No. SRRC-RR-64-17 (1964), Sperry-Rand Research Center: Sperry-Rand Research Center Sudbury, Mass) [16] Burggraf, O. R., J. Fluid Mech., 24, 113 (1966) [17] Goda, K., J. Comput. Phys., 30, 76 (1979) · Zbl 0405.76017 [18] Ghia, U.; Ghia, K. N.; Shin, C. T., J. Comput. Phys., 48, 387 (1982) · Zbl 0511.76031 [19] Benjamin, A. S.; Denny, V. E., J. Comput. Phys., 33, 340 (1979) · Zbl 0421.76020 [20] Schreiber, R.; Keller, H. B., J. Comput. Phys., 49, 310 (1983) · Zbl 0503.76040 [21] Koseff, J. R.; Street, R. L.; Gresho, P. M.; Upson, C. D.; Humphrey, J. A.C.; To, W.-M., (Taylor, C. D., Proceedings, Third International Conference on Numerical Methods in Laminar and Turbulent Flows. Proceedings, Third International Conference on Numerical Methods in Laminar and Turbulent Flows, Seattle, Wash. (Aug. 8-11, 1983)), 564 [22] Armaly, B. F.; Durst, F.; Pereira, J. C.F., J. Fluid Mech., 127, 473 (1983) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.