d’d” et d”-cohomologies d’une variété compacte privée d’un point. Application à l’intégration sur les cycles. (French) Zbl 0586.32009

The author continues his study of \(\partial {\bar \partial}\)-cohomology of a compact complex manifold minus a point, \(Y=Z\setminus point\). This subject is closely related to work by A. Andreotti and F. Norguet [Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 21, 31- 82 (1967; Zbl 0176.040), ibid. 25, 59-114 (1971; Zbl 0212.537)]. Several geometric questions are formulated and answered by properly choosing various cohomology sequences and studying the exactness of such sequences. Let \(C_{n-1}(Y)\) denote the space of n-1 dimensional analytic cycles in Y and \(\Omega^ k\) the sheaf of germs of holomorphic k-forms. It is shown that the obstruction to exactitude of \(H^{n- 1}(Y,\Omega^{n-2})\to^{d}H^{n-1}(Y,\Omega^{n-1})\to^{\rho_ 0}H^ 0(C_{n-1}(Y),{\mathcal O})\) is precisely a vector space of dimension \(\dim_ CH^ 0(Z,\Omega^ 2)\). Here \(\rho_ 0\) is induced by integration. Chapter 1 treats surfaces \((n=2)\); Chapter 2 treats higher dimensions.
Reviewer: E.J.Akutowicz


32Q99 Complex manifolds
32C30 Integration on analytic sets and spaces, currents
32S05 Local complex singularities
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
32C36 Local cohomology of analytic spaces
Full Text: DOI Numdam EuDML


[1] A. ANDREOTTI and F. NORGUET . - Cycles of algebraic manifolds and \partial \partial -cohomology , Ann. Sc. Norm. Sup. Pisa, vol. 25, 1971 , p. 59-114. Numdam | MR 44 #5512 | Zbl 0212.53701 · Zbl 0212.53701
[2] D. BARLET . - Espace des cycles et d\(^{\prime}\) d\(^{\prime\prime}\)-cohomologie de \Bbb Pn - \Bbb Pk , Lect. Notes in Math., n^\circ 409, Fonctions de plusieurs variables complexes (Sém. F. Norguet), Springer-Verlag, p. 98-213. MR 51 #5970 | Zbl 0307.32008 · Zbl 0307.32008
[3] P. GAUDUCHON . - Structure de Hodge d’une surface complexe , in Séminaire de Géométrie, 1981 - 1982 , École Polytechnique, preprint.
[4] S. OFMAN . - Résidu et dualité, Fonctions de plusieurs Variables Complexes V , Lect. Notes in Math., p. 1, 22. Zbl 0591.32014 · Zbl 0591.32014
[5] S. OFMAN . - Injectivité de la transformation obtenue par intégration sur les cycles analytiques. A. Cas d’une variété kählérienne compacte , idem, p. 183, 189. Zbl 0593.32005 · Zbl 0593.32005
[6] S. OFMAN . - Injectivité de la transformation obtenue par intégration sur les cycles analytiques. B. Cas d’une variété algébrique projective privée d’un point , idem, p. 190, 200. Zbl 0593.32006 · Zbl 0593.32006
[7] S. OFMAN . - Injectivité de la transformation obtenue par intégration sur les cycles analytiques. C. Cas du complémentaire d’une sous-variété , idem, p. 201, 228. Zbl 0593.32007 · Zbl 0593.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.