On the numerical integration of second-order initial value problems with a periodic forcing function. (English) Zbl 0589.65064

Runge-Kutta-Nyström type methods and special predictor-corrector methods are constructed for the accurate solution of second-order differential equations of which the solution is dominated by the forced oscillation originating from an external, periodic forcing term. For a family of second-order explicit and linearly implicit Runge-Kutta- Nyström methods it is shown that the forced oscillation is represented with zero phase lag. For a family of predictor-corrector methods of fourth-order, it is shown that both the phase lag order and the dissipation of the forced oscillation can be made arbitrarily high. Numerical examples illustrate the effectiveness of our reduced phase lag methods.


65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI


[1] Brusa, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Int. J. Num. Meth. in Engng.15, 685–699 (1980). · Zbl 0426.65034 · doi:10.1002/nme.1620150506
[2] Chawla, M. M., Rao, P. S.: A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems II. Explicit method. J. Comput. Appl. Math.15, 329–337 (1985). · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4
[3] Chawla, M. M., Rao, P. S., Neta, B.: Two-step fourth order P-stable methods with phase-lag of order six for y”=f(t, y). To appear in J. Comput. Appl. Math. (1986). · Zbl 0596.65047
[4] Dooren, R. van: Stabilization of Cowell’s classical finite difference method for numerical integration. J. Comp. Physics16, 186–192 (1974). · Zbl 0294.65042 · doi:10.1016/0021-9991(74)90112-0
[5] Gladwell, I., Thomas, R. M.: Damping and phase analysis for some methods for solving secondorder ordinary differential equations. Int. J. Num. Meth. Engng.19, 495–503 (1983). · Zbl 0513.65053 · doi:10.1002/nme.1620190404
[6] Hairer, E., Wanner, G.: A theory for Nyström methods. Num. Math.25, 383–400 (1976). · Zbl 0307.65053 · doi:10.1007/BF01396335
[7] Houwen, P. J. van der, Sommeijer, B. P.: Predictor-corrector methods with improved absolute stability regions. IMA J. Num. Anal.3, 417–437 (1983). · Zbl 0533.65045 · doi:10.1093/imanum/3.4.417
[8] Houwen, P. J. van der, Sommeijer, B. P.: Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. Report NM-R8504, Centre of Mathematics and Computer Science, Amsterdam (1985). To appear in SIAM Numer. Anal. · Zbl 0624.65058
[9] Houwen, P. J. van der, Sommeijer, B. P.: Predictor-corrector methods for periodic second-order initial value problems. Report NM-R8509, Centre of Mathematics and Computer Science, Amsterdam (1985). To appear in IMA J. Num. Anal. 1987. · Zbl 0631.65074
[10] Lambert, J. D.: Computational methods in ordinary differential equations. John Wiley & Sons, London (1973). · Zbl 0258.65069
[11] Strehmel, K., Weiner, R.: Nichtlineare Stabilität und Phasenuntersuchung adaptiver Nyström-Runge-Kutta Methoden. Computing35, 325–344 (1985). · Zbl 0569.65054 · doi:10.1007/BF02240198
[12] Thomas, R. M.: Phase properties of high order, almost P-stable formulae. BIT24, 225–238 (1984). · Zbl 0569.65052 · doi:10.1007/BF01937488
[13] Twizell, E. H.: Phase-lag analysis for a family of multiderivative methods for second order periodic initial value problems. Submitted for publication. · Zbl 0607.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.