Puri, Madan L.; Ralescu, Dan A. Fuzzy random variables. (English) Zbl 0592.60004 J. Math. Anal. Appl. 114, 409-422 (1986). In a previous paper [ibid. 91, 552-558 (1983; Zbl 0528.54009)] the authors defined differentials for a fuzzy valued function. In this clearly thought and well-written paper they define an integral, or an expected value, of a fuzzy valued random variable. The definition is based on the integral of a set-valued function. The authors give an existence theorem for the expected value and derive the Lebesgue dominated convergence theorem for fuzzy random variables. A different kind of expected value is defined by H. Kwakernaak [Inf. Sci. 15, 1-29 (1978; Zbl 0438.60004)] and W. E. Stein and K. Talati [Fuzzy Sets Syst. 6, 271-283 (1981; Zbl 0467.60005)]. Reviewer: O.Kaleva Cited in 26 ReviewsCited in 649 Documents MSC: 60A99 Foundations of probability theory 60D05 Geometric probability and stochastic geometry 28B99 Set functions, measures and integrals with values in abstract spaces 03E72 Theory of fuzzy sets, etc. Keywords:differentials for a fuzzy valued function; existence theorem for the expected value; Lebesgue dominated convergence theorem for fuzzy random variables Citations:Zbl 0528.54009; Zbl 0438.60004; Zbl 0467.60005 PDF BibTeX XML Cite \textit{M. L. Puri} and \textit{D. A. Ralescu}, J. Math. Anal. Appl. 114, 409--422 (1986; Zbl 0592.60004) Full Text: DOI OpenURL References: [1] Artstein, Z; Vitale, R.A, A strong law of large numbers for random compact sets, Ann. probab., 879-882, (1975) · Zbl 0313.60012 [2] Aumann, R.J, Integrals of set-valued functions, J. math. anal. appl., 12, 1-12, (1965) · Zbl 0163.06301 [3] Aumann, R.J; Perles, M, A variational problem arising in economic, J. math. anal. appl., 11, 488-503, (1965) · Zbl 0137.39201 [4] Byrne, C.L, Remarks on the set-valued integrals of Debreu and Aumann, J. math. anal. appl., 62, 243-246, (1978) · Zbl 0373.28005 [5] Cressie, N, A central limit theorem for random sets, Z. wahrsch. verw. gebiete, 49, 37-47, (1979) · Zbl 0405.60024 [6] Debreu, G, Integration of correspondences, (), 351-372 · Zbl 0211.52803 [7] Debreu, G; Schmeidler, D, The Radon-nikodým derivative of a correspondence, (), 41-56 [8] Féron, R, Ensembles aléatoires flous, C. R. acad. sci. Paris ser. A, 282, 903-906, (1976) · Zbl 0327.60004 [9] Fortet, R; Kambouzia, M, Ensembles aléatoires et ensembles flous, Publ. économétriques, 9, 1-23, (1976) · Zbl 0365.60011 [10] Goodman, I.R, Fuzzy sets as equivalence classes of random sets, () · Zbl 0552.60007 [11] Hermes, H, Calculus of set-valued functions and control, J. math. mech., 18, 47-59, (1968) · Zbl 0175.05101 [12] Kudō, H, Dependent experiments and sufficient statistics, Natur. sci. rep. ochanomizu univ., 4, 151-163, (1953) · Zbl 0055.37501 [13] Kuratowski, C, Topologie I, Monografie matematyczne, (1948), Warsaw · JFM 59.0563.02 [14] Kwakernaak, H, Fuzzy random variables: definition and theorems, Inform. sci., 15, 1-29, (1978) · Zbl 0438.60004 [15] Matheron, G, Random sets and integral geometry, (1975), Wiley New York · Zbl 0321.60009 [16] Negoita, C.V; Ralescu, D, Applications of fuzzy sets to systems analysis, (1975), Wiley New York · Zbl 0326.94002 [17] Price, G.B, The theory of integration, Trans. amer. math. soc., 47, 1-50, (1940) · Zbl 0022.31901 [18] Puri, M.L; Ralescu, D, Différentielle d’une fonction floue, C. R. acad. sci. Paris Sér. I, 293, 237-239, (1981) · Zbl 0489.46038 [19] Puri, M.L; Ralescu, D, Integration on fuzzy sets, Advan. appl. math., 3, 430-434, (1982) · Zbl 0597.28009 [20] Puri, M.L; Ralescu, D, Strong law of large numbers for Banach space valued random sets, Ann. probab., 11, 222-224, (1983) · Zbl 0508.60021 [21] Puri, M.L; Ralescu, D, Differentials of fuzzy functions, J. math. anal. appl., 91, 552-558, (1983) · Zbl 0528.54009 [22] Rådström, H, An embedding theorem for spaces of convex sets, (), 165-169 · Zbl 0046.33304 [23] Richter, H, Verallgemeinerung eines in der statistik benötigten satzes der masstheorie, Math. ann., 150, 85-90, (1963) · Zbl 0109.27801 [24] Zadeh, L.A, Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.