Travelling-wave solutions to the Korteweg-de Vries-Burgers equation. (English) Zbl 0594.76015

R. S. Johnson [J. Fluid Mech. 42, 49-60 (1970; Zbl 0213.549)] suggested that the equation (1)\(u_ t+uu_ x+\delta u_{xxx}- \epsilon u_{xx}=0\) may serve as an approximate model for waves in physical systems in which the weak effects of nonlinearity, dissipation, and dispersion are present. In this paper, consideration was given to the travelling-wave solutions (2)u(x,t)\(=S(x-ct\); \(\epsilon\),\(\delta)\), where c is a fixed positive constant. This paper has been organized as follows. Section 2 is devoted to establishing the existence and uniqueness of the solutions (2), corresponding to given positive values of c, \(\epsilon\) and \(\delta\). A more detailed description of the travelling-wave solution is given in section 3. Certain qualitative aspects of these solutions are proved. Sections 4 and 5 delve into the limiting behavior of S(\(\cdot;\epsilon,\delta)\) as \(\epsilon\) \(\to 0\) and as \(\delta\) \(\to 0\), respectively. In section 6, the limiting form of S(\(\cdot;\epsilon,\delta)\) as \(\epsilon\) and \(\delta\) simultaneously tend to zero is examined. In the case where the ratio \(\delta /\epsilon^ 2\) remains bounded it transpires that S converges to a shock-wave profile.
Reviewer: Lung Y.Shih


76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q99 Partial differential equations of mathematical physics and other areas of application


Zbl 0213.549
Full Text: DOI


[1] DOI: 10.1017/S0022112071001393 · doi:10.1017/S0022112071001393
[2] DOI: 10.1063/1.1762081 · doi:10.1063/1.1762081
[3] DOI: 10.1002/cpa.3160240402 · Zbl 0233.35063 · doi:10.1002/cpa.3160240402
[4] Coddington, Theory of ordinary differential equations (1955) · Zbl 0064.33002
[5] DOI: 10.1016/0021-9991(77)90070-5 · Zbl 0356.65107 · doi:10.1016/0021-9991(77)90070-5
[6] Bona, Philos. Trans. Roy. Soc. London Ser. A 278 pp 555–604– (1975) · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[7] DOI: 10.1098/rsta.1981.0178 · Zbl 0497.76023 · doi:10.1098/rsta.1981.0178
[8] DOI: 10.1098/rspa.1975.0106 · Zbl 0328.76016 · doi:10.1098/rspa.1975.0106
[9] DOI: 10.1098/rsta.1972.0032 · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[10] DOI: 10.1098/rspa.1972.0074 · doi:10.1098/rspa.1972.0074
[11] DOI: 10.1017/S0022112066001678 · doi:10.1017/S0022112066001678
[12] Peletier, Proceedings of the IUTAM symposium on instability of continuous systems pp 418– (1971) · doi:10.1007/978-3-642-65073-4_59
[13] DOI: 10.1063/1.1693764 · Zbl 0264.76014 · doi:10.1063/1.1693764
[14] DOI: 10.1017/S0022112070001064 · Zbl 0213.54904 · doi:10.1017/S0022112070001064
[15] DOI: 10.1137/1014101 · Zbl 0221.35038 · doi:10.1137/1014101
[16] Hartman, Ordinary differential equations (1973) · Zbl 0125.32102
[17] DOI: 10.1017/S002211207400139X · Zbl 0373.76010 · doi:10.1017/S002211207400139X
[18] Whitham, Linear and nonlinear waves (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.