×

Swirling flow between rotating plates. (English) Zbl 0594.76022

The authors seek the solutions of the Navier Stokes equations in the form: \[ U_ x=xH'(z)-G(z)y+g(z);\quad \]
\[ U_ y=yH'(z)+G(z)x- f(z);\quad U_ z=-H(z) \] and showed that H(z), G(z), g(z), f(z) satisfy a boundary value problem which constitutes the nonlinear von Kármán equations for axially symmetric swirling flow for functions H(z,\(\epsilon)\), G(z,\(\epsilon)\) and a linear set of equations for f(z,\(\epsilon)\), g(z,\(\epsilon)\) with coefficients depending on H(z,\(\epsilon)\), G(z,\(\epsilon)\). When the planes rotate with different angular velocities about a common axis or distinct axes it is shown that there is a one parameter family of solutions for large viscosities.
Reviewer: V.Subba Rao

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids
35Q30 Navier-Stokes equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. N. Abbot & K. Walters, Rheometrical flow systems, Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations, J. Fluid. Mech. 40, 205-213 (1970). · Zbl 0184.52102 · doi:10.1017/S0022112070000125
[2] G. K. Batchelor, Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow, Quart. J. Mech. Appl. Math. 4, 29-41 (1951). · Zbl 0042.43101 · doi:10.1093/qjmam/4.1.29
[3] R. Berker, A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel planes rotating about the same axis, Archiwum Mechaniki Stosowanej 31, 265-280 (1979). · Zbl 0415.76026
[4] R. Berker, Sur quelques cas d’intégration des équations du mouvement d’un fluide visqueux incompressible, Lille, Paris (1936).
[5] J. H. Cerutti, Collocation Methods for Systems of Ordinary Differential Equations and Parabolic Partial Differential Equations, Thesis, University of Wisconsin (1975).
[6] A. R. Elcrat, On the swirling flow between rotating coaxial disks, J. Differential Equations 18, 423-430 (1975). · Zbl 0302.76059 · doi:10.1016/0022-0396(75)90072-8
[7] J. D. Goddard, The dynamics of simple fluids in steady circular shear, Quarterly of Applied Mathematics 31, 107-118 (1983). · Zbl 0515.76006
[8] S. P. Hastings, On existence theorems for some problems from boundary layer theory, Arch. Rational Mech. Anal. 38, 308-316 (1970). · Zbl 0212.59403 · doi:10.1007/BF00281527
[9] T. von Karman, Über laminare und turbulente Reibung, Z. Angew. Math. Mech. 1, 232-252 (1921). · doi:10.1002/zamm.19210010317
[10] H. O. Kreiss & S. V. Parter, On the swirling flow between rotating coaxial disks: existence and nonuniqueness, Communs. Pure and Applied Math. 36, 55-84 (1983). · doi:10.1002/cpa.3160360104
[11] J. B. McLeod & S. V. Parter, On the flow between two counter-rotating infinite plane disks, Arch. Rational Mech. Anal. 54, 301-327 (1974). · Zbl 0287.76067 · doi:10.1007/BF00249193
[12] S. V. Parter, On the swirling flow between rotating coaxial disks: A survey, pages 258-280 in Theory and Applications of Singular Perturbations, Proc. of a Conf. Oberwolfach 1981, Edited by W. Eckhaus and E. M. deJager. Lecture Notes in Mathematics # 942, Springer-Verlag; Berlin, Heidelberg, New York (1982).
[13] K. R. Rajagopal, On the flow of a simple fluid in an orthogonal rheometer, Arch. Rational Mech. Anal. 79, 29-47 (1982). · Zbl 0513.76002 · doi:10.1007/BF02416565
[14] K. R. Rajagopal, A class of exact solutions to the Navier-Stokes equations, Int. J. Eng. Science, in press.
[15] K. R. Rajagopal & A. S. Gupta, Flow and stability of a second grade fluid between two parallel plates rotating about non-coincident axes. Intl. J. Eng. Science 19, 1401-1409 (1981). · Zbl 0469.76003 · doi:10.1016/0020-7225(81)90037-9
[16] K. R. Rajagopal & A. S. Gupta, Flow and stability of second grade fluids between two parallel rotating plates, Archiwum Mechaniki Stosowanej 33, 663-674 (1981). · Zbl 0501.76006
[17] K. R. Rajagopal & A. S. Wineman, On the flow of a BKZ fluid in an orthogonal rheometer, Journal of Rheology 27, 509-516 (1983). · Zbl 0535.76004 · doi:10.1122/1.549729
[18] H. Rasmussen, A note on the non-unique solutions for the flow between two infinite rotating disks, Z. Angew. Math. Mech. 53, 273-274 (1973). · Zbl 0265.76118 · doi:10.1002/zamm.19730530408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.