Bertsch, M.; Kersner, R.; Peletier, L. A. Positivity versus localization in degenerate diffusion equations. (English) Zbl 0596.35073 Nonlinear Anal., Theory Methods Appl. 9, 987-1008 (1985). The authors study the Cauchy problem (CP) \(u_ t-\Delta (u^ m)+f(u)=0\) in \(S=R^ N\times (0,\infty)\), \(u(x,0)=u_ 0(x)\) for \(x\in R^ N\), where \(m\geq 1\), \(N\geq 1\), \(f\in C^ 1([0,\infty))\), \(f(0)=0\) and \(u_ 0\) is a nonnegative continuous function on \(R^ N\) with bounded (and nonempty) support. This problem has the positivity property (P) if (for each \(u_ 0\) as above) for each \(x\in R^ N\) there is T(x)\(\geq 0\) such that \(u(x,t)>0\) for all \(t\geq T(x)\). It is known that (P) holds in the following cases: 1) \(m=1\) (then T(x)\(\equiv 0)\); 2) \(f\leq 0\); \(3)\quad \limsup_{s\searrow 0}s^{-m} f(s)<\infty.\) The problem (CP) has the localization property (L) if (for each \(u_ 0)\) the solution u has the property that there is \(R>0\) such that \(\sup p u(.,t)\subset B_ R=\{x\in R^ N:\quad | x| \leq R\}\) for all \(t\geq 0\). Let \(f(s)=s^ m g(s)\) \((s>0)\) where \(g: R^+\to R^+\) satisfies for some \(s_ 0>0:\) (a) g’(s)\(\leq 0\) when \(0<s<s_ 0\); (b) \(s^{\alpha} g(s)\) is nondecreasing on \((0,s_ 0)\) for some \(\alpha\in (0,m-1)\). Then (1) (L) holds iff \(\int_{0}ds/F(s)^{1/2}<\infty\), where \(F(s)=\int^{s}_{0}f(r^{1/m})dr;\) (2) there are constants \(0<A<B<\infty\) such that \(A\omega\) (t)\(\leq \leq R^-(t)\leq R^+(t)\leq B\omega (t)\) for \(t\geq 1\), if \(\int_{0}ds/F(s)^{1/2}=\infty\), where \(\omega (t)=\Phi (y(t,1),1),\quad \Phi (s,v)=\int^{v}_{s}dr/(rg(r)^{1/2}),\quad R^-(t)=\sup \{R>0:\quad B_ R\subset P(t)\},\quad R^+(t)=\inf \{R>0:\quad P(t)\subset B_ R\}\) and \(P(t)=\{x\in R^ N:\quad u(x,t)>0\}.\) Here y(t,1) is the solution of \(y'=-f(y)\), \(y(0)=1\). Reviewer: J.Danesova Cited in 1 ReviewCited in 44 Documents MSC: 35K65 Degenerate parabolic equations 76R99 Diffusion and convection 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs Keywords:degenerate diffusion; nonlinear diffusion; porous medium equation; absorption; compact support; Cauchy problem; positivity property; localization property PDF BibTeX XML Cite \textit{M. Bertsch} et al., Nonlinear Anal., Theory Methods Appl. 9, 987--1008 (1985; Zbl 0596.35073) Full Text: DOI OpenURL References: [1] Aronson, D.G., Density dependent interaction-diffusion systems, () · Zbl 0529.35046 [2] Aronson, D.G.; Crandall, M.G.; Peletier, L.A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear analysis, 6, 1001-1022, (1982) · Zbl 0518.35050 [3] Berestycki, H., Le nombre de solutions de certains problémes semilinéaires elliptiques, J. funct. analysis, 40, 1-29, (1981) · Zbl 0452.35038 [4] Bertsch, M.; Nanbu, T.; Peletier, L.A., Decay of solutions of a degenerate nonlinear diffusion equation, Nonlinear analysis, 6, 539-554, (1982) · Zbl 0487.35051 [5] Bertsch, M.; Kersner, R.; Peletier, L.A., Sur le comportement de la frontière libre dans une solution en théorie de la filtration, C.r. hebd. séanc. acad. sci. Paris, 295, 63-66, (1982) · Zbl 0504.35083 [6] Bertsch, M.; Peletier, L.A., A positivity property of solutions of nonlinear diffusion equations, J. diff. eqns, 53, 30-147, (1984) · Zbl 0488.35041 [7] {\scBertsch} M. & {\scPeletier} L.A.,The asymptotic profile of solutions of degenerate diffusion equations, Archs ration. Mech. Analysis (to appear). [8] Brezis, H.; Crandall, M.G., Uniqueness of solutions of the initial problem for ut − δø(u) = 0, J. math. pures appl., 58, 153-163, (1979) · Zbl 0408.35054 [9] {\scDiaz} J.I.& {\scKersner} R., On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium (to appear). · Zbl 0634.35042 [10] Dibenedetto, E., Continuity of weak solutions to a general porous media equation, Indiana univ. math. J., 32, 83-118, (1983) · Zbl 0526.35042 [11] Clement, Ph.; Peletier, L.A., On positive superharmonic solutions to semi-linear elliptic eigenvalue problems, J. math. analysis applic., 100, 561-582, (1984) · Zbl 0543.35038 [12] Herrero, M.A., On the growth of the interfaces of a nonlinear degenerate parabolic equation, (), 218-224 [13] Kalashnikov, A.S., The propagation of disturbances in problems of non-linear heat conduction with absorption, Zh. vȳchisl. mat. mat. fiz., 14, 891-904, (1974) [14] Kersner, R., Some properties of generalized solutions of quasilinear degenerate parabolic equations, Acta math. acad. sci. hung., 32, 301-330, (1978) [15] Kersner, R., On the behaviour when t grows to infinity of generalized solutions of a degenerate quasilinear parabolic equation, Acta math. sci. hung., 34, 157-163, (1979) [16] Knerr, B.F., The behaviour of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension, Trans. am. math. soc., 249, 409-424, (1979) · Zbl 0415.35045 [17] Oleinik, O.A.; Kalashnikov, A.S.; Yu-Lin, C., The Cauchy problem and boundary problems for equations of the type of nonstationary filtration, Izv. akad. nauk SSSR ser. mat., 22, 667-704, (1958) · Zbl 0093.10302 [18] Peletier, L.A., The porous media equation, () · Zbl 0497.76083 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.