×

Surfaces in computer aided geometric design: A survey with new results. (English) Zbl 0597.65001

This article surveys several surface schemes which are used in CAGD. After general and historic remarks, Coons and Bézier surfaces are discussed. The topic of multidimensional surfaces is addressed. The ”open research questions” part is quite interesting. The bibliography is extensive.
Reviewer: G.Farin

MSC:

65D07 Numerical computation using splines
65S05 Graphical methods in numerical analysis
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
41A15 Spline approximation
41A63 Multidimensional problems

Software:

pchip
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alfeld, P., Multivariate scattered data derivative generation by functional minimization, (Computer Aided Geometric Design. Computer Aided Geometric Design, Temporary reference: Mathematics Research Center Report, 2703 (1983), University of Wisconsin: University of Wisconsin Madison, WI), to appear · Zbl 0585.65014
[2] Alfeld, P., A discrete \(C^1\) interpolant for tetrahedral data, Rocky Mountain J. Math., 14, 5-16 (1984) · Zbl 0566.65004
[3] Alfeld, P., A trivariate Clough-Tocher scheme for tetrahedral data, Computer Aided Geometric Design, 1, 169-181 (1984) · Zbl 0566.65003
[4] Alfeld, P., A bivariate \(C^2\) Clough-Tocher scheme, Computer Aided Geometric Design, 1, 257-267 (1984) · Zbl 0597.65005
[5] Alfeld, P.; Barnhill, R. E., A transfinite \(C^2\) interpolant over triangles, Rocky Mountain J. Math, 14, 17-40 (1984) · Zbl 0558.65002
[6] Arner, P. R., Hidden surface elimination, (Masters thesis (1985), Department of Mathematics, University of Utah: Department of Mathematics, University of Utah Salt Lake City, UT)
[7] Barnhill, R. E., Representation and approximation of surfaces, (Rice, J. R., Mathematical Software III (1977), Academic Press: Academic Press New York) · Zbl 0597.65001
[8] Barnhill, R. E., Coons’ patches, Computers in Industry, 3, 2, 37-43 (1982)
[9] Barnhill, R. E., Computer aided surface representation and design, (Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam) · Zbl 0597.65001
[10] Barnhill, R. E., A survey of the representation and design of surfaces, IEEE Computer Graphics Appl., 3, 7, 9-16 (1983)
[11] Barnhill, R. E., A survey of transfinite patch methods (1985), in preparation · Zbl 0597.65001
[12] Barnhill, R. E.; Birkhoff, G.; Gordon, W. J., Smooth interpolation in triangles, J. Approx. Theory, 8, 2, 114-128 (1973) · Zbl 0271.41002
[13] Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam
[14] Barnhill, R. E.; Brown, J. H.; Klucewicz, I. M., A new twist for computer aided geometric design, Computer Graphics and Image Processing, 8, 78-91 (1978)
[15] Barnhill, R. E.; Chang, R., Approximation, (Huddleston, R. E., Program Directions for Computational Mathematics (1979), Department of Energy: Department of Energy Washington, DC)
[16] Barnhill, R. E.; Dube, R. P.; Little, F. F., Properties of Shepard’s surfaces, Rocky Mountain J. Math, 13, 2, 365-382 (1983) · Zbl 0514.41006
[17] Barnhill, R. E.; Farin, G., \(C^1\) quintic interpolation over triangles: two explicit representations, Internat. J. Numer. Methods Engrg., 17, 1763-1778 (1981) · Zbl 0477.65009
[18] Barnhill, R. E.; Gregory, J. A., Polynomial interpolation to boundary data on triangles, Math. Computation, 29, 726-735 (1975) · Zbl 0313.65098
[19] Barnhill, R. E.; Gregory, J. A., Sard kernel theorems on triangular domains with application to finite element error bounds, Numerische Math., 25, 215-229 (1976) · Zbl 0304.65076
[20] Barnhill, R. E.; Gregory, J. A., Interpolation remainder theory from Taylor expansions with nonrectangular domains of influence, Numerische Math., 25, 401-408 (1976) · Zbl 0304.65075
[21] Barnhill, R. E.; Jordan, M.; Piper, B. R., Visual continuity for space curves and surfaces, (Math CAGD Seminars (1984), University of Utah: University of Utah Salt Lake City, UT)
[22] Barnhill, R. E.; Little, F. F., Three- and four-dimensional surfaces, Rocky Mountain J. Math., 14, 77-102 (1984) · Zbl 0552.65008
[23] Barnhill, R. E.; Nielson, G. M., Surfaces, a special issue of the Rocky Mountain J. Math., 14, 1 (1984)
[24] Barnhill, R. E.; Piper, B. R.; Stead, S. E., Surface representation for the graphical display of structured data, (Final Report on Joint Research Interchange with The University of Utah (1984), NASA-Ames Research Center: NASA-Ames Research Center Moffett Field, CA)
[25] Barnhill, R. E.; Piper, B. R.; Stead, S. E., A multidimensional surface problem: pressure on a wing (1985), in this Volume
[26] Barnhill, R. E.; Riesenfield, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York
[27] Barnhill, R. E.; Stead, S. E., Multistage trivariate surfaces, Rocky Mountain J. Math., 14, 103-118 (1984) · Zbl 0552.65009
[28] Barnhill, R. E.; Whelan, T., A geometric interpretation of convexity conditions for surfaces, Computer Aided Geometric Design, 1, 285-287 (1985) · Zbl 0559.41017
[29] Barnhill, R. E.; Worsey, A. J., Smooth interpolation over hypercubes, Computer Aided Geometric Design, 1, 101-113 (1984) · Zbl 0553.65011
[30] Barsky, B. A.; DeRose, T. D., Geometric continuity of parametric curves, (Report No. UCB/CSD 84/205 (1984), Computer Science Division (EECS), University of California: Computer Science Division (EECS), University of California Berkeley, CA 94720) · Zbl 0839.65006
[31] Bézier, P., Définition numérique des courbes et surfaces, Automatisme, 11, 625-632 (1966)
[32] Bézier, P., Définition numérique des courbes et surfaces (II), Automatisme, 12, 17-21 (1967)
[33] Bézier, P., Numerical Control, Mathematics and Application (1972), Wiley: Wiley New York · Zbl 0251.93002
[34] Boehm, W.; Farin, G.; Kahmann, J., A survey of curve and surface methods in CAGD, Computer Aided Geometric Design, 1, 1-60 (1984) · Zbl 0604.65005
[35] de Boor, C., A Practical Guide to Splines (1978), Springer: Springer New York · Zbl 0406.41003
[36] Bowyer, A., Computing Dirichlet tessellations, Computer J., 24, 162-166 (1981)
[37] Brunet, P., Increasing the smoothness of bicubic spline surfaces (1985), in this Volume · Zbl 0585.65008
[38] de Casteljau, P., Outillage méthods calcul (1959), André Citroën Automobiles SA: André Citroën Automobiles SA Paris
[39] de Casteljau, P., Courbes et surfaces à pôles (1963), André Citroën Automobiles SA: André Citroën Automobiles SA Paris
[40] Chang, G.; Feng, Y., An improved condition for the convexity of Bernstein-Bézier surfaces over triangles, Computer Aided Geometric Design, 1, 279-283 (1985) · Zbl 0563.41009
[41] Chang, G.; Davis, P. J., The convexity of Bernstein polynomials over triangles, J. Approx. Theory, 40, 11-28 (1984) · Zbl 0528.41005
[42] Clough, R. W.; Tocher, J. L., Finite element stiffness matrices for analysis of plates in bending, (Proceedings of Conference on Matrix Methods in Structural Mechanics (1965), Air Force Institute of Technology, Wright-Patterson A.F.B: Air Force Institute of Technology, Wright-Patterson A.F.B OH)
[43] Coons, S. A., Surfaces for computer aided design (1967), Mechanical Engineering Department, M.I.T, (Available as AD 663 504 from the National Technical Information Service, Springfield, VA 22161)
[44] Davis, P. J., Interpolation and Approximation (1975), Dover: Dover New York · Zbl 0111.06003
[45] Farin, G., Bézier polynomials over triangles and the construction of piecewise \(C^r\) polynomials (1980), Department of Mathematics TR/91, Brunel University: Department of Mathematics TR/91, Brunel University Uxbridge, England
[46] Farin, G., A construction for the visual \(C^1\) continuity of polynomial surface patches, Computer Graphics and Image Processing, 20, 272-282 (1982) · Zbl 0541.65006
[47] Farin, Visually \(C^2\) cubic splines, Computer Aided Design, 14, 137-139 (1982)
[48] Farin, G., Smooth interpolation to scattered 3D data, (Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam)
[49] Farin, G., A modified Clough-Tocher interpolant (1985), in this Volume · Zbl 0586.65007
[50] Farin, G., A survey of Bernstein-Bézier triangular interpolants (1985), in preparation
[51] Faux, I. D.; Pratt, M. J., Computational Geometry for Design and Manufacture (1979), Halsted Press: Halsted Press New York · Zbl 0395.51001
[52] Foley, T. A.; Nielson, G. M., Multivariate interpolation to scattered data using delta iteration, (Cheney, E. W., Approximation Theory III (1980), Academic Press: Academic Press New York) · Zbl 0505.41003
[53] Foley, J. D.; Van Dam, A., Fundamentals of Interactive Computer Graphics (1982), Addison-Wesley: Addison-Wesley Reading, MA
[54] Forrest, A. R., Interactive interpolation and approximation by Bézier polynomials, Computer J., 15, 71-79 (1972) · Zbl 0243.68015
[55] Franke, R. H., Scattered data interpolation: test of some methods, Math. Computation, 38, 181-200 (1982) · Zbl 0476.65005
[56] Franke, R. H., Thin plate splines with tension (1985), in this Volume · Zbl 0589.65011
[57] Fritsch, F. N., Monotonicity preserving bicubic interpolation (1985), in this Volume · Zbl 0576.65003
[58] Fritsch, F. N.; Carlson, R. E., Monotone piecewise bicubic interpolation, SIAM J. Numer. Anal. (1983), (submitted). Temporary reference: Lawrence Livermore Laboratory Preprint 86449, Rev. 1 · Zbl 0571.65005
[59] Gordon, W. J., Distributive lattices and the approximation of multivariate functions, (Schoenberg, I. J., Approximations with Special Emphasis on Splines (1969), University of Wisconsin Press: University of Wisconsin Press Madison) · Zbl 0269.41029
[60] Gordon, W. J., Free-form surface interpolation through curve networks, (Research Publication GMR-921 (1969), General Motor Research Labs: General Motor Research Labs Warren, MI 48090) · Zbl 0192.42201
[61] Gordon, W. J., Spline-blended surface interpolation through curve networks, J. Math. Mechanics., 18, 931-952 (1969) · Zbl 0192.42201
[62] Gordon, W. J., Blending-function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal., 8, 158-177 (1971) · Zbl 0237.41008
[63] Gordon, W. J.; Riesenfeld, R. F., B-spline curves and surfaces, (Barnhill, R. E.; Riesenfeld, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York)
[64] Green, P. J.; Sibson, R., Computing Dirichlet tessellations in the plane, Computer J., 21, 168-173 (1978) · Zbl 0377.52001
[65] Gregory, J. A., Smooth interpolation without twist constraints, (Barnhill, R. E.; Riesenfeld, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York)
[66] Gregory, J. A., Error bounds for linear interpolation on triangles, (Whiteman, J. R., The Mathematics of Finite Elements and Applications II (1975), Academic Press: Academic Press London)
[67] Gregory, J. A., Interpolation to boundary data on simplices (1979), Department of Mathematics TR/87, Brunel University: Department of Mathematics TR/87, Brunel University Uxbridge, England
[68] Gregory, J. A., \(C^1\) rectangular and non-rectangular surface patches, (Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam)
[69] Gregory, J. A., Interpolation to boundary data on the simplex (1985), in this Volume · Zbl 0582.65004
[70] Gregory, J. A.; Charrot, P., A \(C^1\) triangular interpolation patch for computer aided geometric design, Computer Graphics and Image Processing, 13, 80-87 (1980)
[71] Gregory, J. A.; Delbourgo, R., Piecewise rational quadratic interpolation to monotonic data, Inst. Math. Appl. J. Numer. Anal., 2, 123-130 (1982) · Zbl 0481.65004
[72] Hagen, H., Geometric spline curves (1985), in this Volume · Zbl 0577.65006
[73] Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J. Geophysical Research, 76, 1905-1915 (1971)
[74] Herron, G. J., Triangular and Multisided Patch Schemes, (Ph.D. Thesis (1979), Department of Mathematics, University of Utah: Department of Mathematics, University of Utah Salt Lake City, UT)
[75] Herron, G. J., Smooth closed surfaces with discrete triangular interpolants, Computer Aided Geometric Design (1984), (under revision)
[76] Kahmann, J., Continuity of curvature between adjacent Bézier patches, (Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam)
[77] Keyworth, G. A., Federal R&D and industrial policy, Science, 220, 1122-1125 (1983)
[78] Kolar, V.; Kratochvil, J.; Zenisek, A.; Zlamal, M., Technical, Physical, and Mathematical Principles of the Finite Element Method (1971), Academia, Czechoslovak Academy of Sciences: Academia, Czechoslovak Academy of Sciences Prague, Czechoslovakia
[79] Lawson, C. L., Software for \(C^1\) surface interpolation, (Rice, J. R., Mathematical Software III (1977), Academic Press: Academic Press New York) · Zbl 0407.68033
[80] Lawson, C. L., \(C^1\) surface interpolation for scattered data on a sphere, Rocky Mountain J. Math., 14, 177-202 (1984) · Zbl 0579.65008
[81] Little, F. F., Private communication (1978)
[82] Little, F. F., Tessellation of tetrahedra, (Math CAGD Seminars (1981), University of Utah: University of Utah Salt Lake City, UT)
[83] Little, F. F., Convex combination surfaces, (Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam) · Zbl 0552.65008
[84] Mansfield, L., Interpolation to boundary data in tetrahedra with applications to compatible finite elements, J. Math. Anal. Appl., 56, 137-164 (1976) · Zbl 0361.41002
[85] Newman, W. M.; Sproull, R. F., Principles of Interactive Computer Graphics (1979), McGraw-Hill: McGraw-Hill New York · Zbl 0288.68017
[86] Nielson, G. M., Some piecewise polynomial alternatives to splines under tension, (Barnhill, R. E.; Riesenfeld, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York)
[87] Nielson, G. M., The side-vertex method for interpolation in triangles, J. Approx. Theory, 25, 318-336 (1979) · Zbl 0401.41005
[88] Nielson, G. M., Minimum norm interpolation in triangles, SIAM J. Numer. Anal., 17, 44-62 (1980) · Zbl 0431.41005
[89] Nielson, G. M., A rectangular \(v\)-spline for interactive surface design (1985), in this Volume
[90] Nielson, G. M.; Franke, R. H., Surface construction based upon triangulations, (Barnhill, R. E.; Boehm, W., Surfaces in Computer Aided Geometric Design (1983), North-Holland: North-Holland Amsterdam)
[91] Nielson, G. M.; Franke, R. H., A method for construction of surfaces under tension, Rocky Mountain J. Math., 14, 202-222 (1984)
[92] Petersen, C. S., Contours of three- and four-dimensional surfaces, (Masters thesis (1983), Department of Mathematics, University of Utah: Department of Mathematics, University of Utah Salt Lake City, UT)
[93] Petersen, C. S., Adaptive contouring of three-dimensional surfaces, Computer Aided Geometric Design, 1, 61-74 (1984) · Zbl 0576.65137
[94] Piper, B., Triangular Shepard’s methods, (Math CAGD Seminars (1983), University of Utah: University of Utah Salt Lake City, UT)
[95] Poeppelmeier, C. C., A Boolean sum interpolation scheme to random data for computer aided geometric design, (Masters thesis (1975), Computer Science Department: Computer Science Department Utah, Salt Lake City, UT)
[96] Rescorla, K. L., Hermite interpolation over simplices, (Math. CAGD Report (1985), University of Utah), submitted for publication. Temporary reference: · Zbl 0638.65007
[97] Sabin, M. A., The use of piecewise forms for the numerical representation of shape, (Tanulmanyok 60/1977 (1976), Hungarian Academy of Sciences: Hungarian Academy of Sciences Budapest, Hungary)
[98] Sard, A., Linear Approximation, (Mathematics Surveys Number 9 (1963), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0115.05403
[99] Schumaker, L. L., Fitting surfaces to scattered data, (Lorentz, G. G.; Chui, C. K.; Schumaker, L. L., Approximation Theory II (1976), Academic Press: Academic Press New York) · Zbl 0343.41003
[100] Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the Association for Computing Machinery National Conference, 517-524 (1968)
[101] Sibson, R., Locally equiangular triangulations, Computer J., 21, 243-245 (1978)
[102] Stead, S. E., Smooth multistage multivariate approximation, (Ph.D. thesis (1983), Division of Applied Mathematics, Brown University: Division of Applied Mathematics, Brown University Providence, RI 02912)
[103] Stead, S. E., Estimation of gradients from scattered data, Rocky Mountain J. Math., 14, 265-280 (1984) · Zbl 0558.65009
[104] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[105] Watson, D. F., Computing the \(n\)-dimensional Delaunay tessellation with application to Voronoi polytopes, Computer J., 24, 167-172 (1981)
[106] Whelan, T., A representation of a \(C^2\) interpolant over triangles, (Math. CAGD Report (1985), University of Utah), submitted for publication. Temporary reference:
[107] Worsey, A. J., \(C^2\) interpolation over hypercubes (1985), in this Volume · Zbl 0599.65003
[108] Zenisek, A., Interpolation polynomials on the triangle, Numerische Math., 15, 283-296 (1970) · Zbl 0216.38901
[109] Zenisek, A., Polynomial approximation on tetrahedrons in the finite element method, J. Approx. Theory, 7, 334-351 (1973) · Zbl 0279.41005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.