Integral and current representation of Federer’s curvature measures. (English) Zbl 0598.53058

For arbitrary subsets of \(R^ d\) with positive reach d-1 principal curvatures (as functions on the unit normal bundle with range \((- \infty,+\infty] )\) are introduced. Federer’s curvature measures may be expressed by integrating elementary symmetric functions of the principal curvatures over the unit normal bundle with respect to the (d-1)- dimensional Hausdorff measure. This extends well-known classical results from differential geometry concerning Lipschitz-Killing curvatures of \(C_ 2\)-submanifolds. The integrals are also interpreted as values of associated rectifiable currents (normal cycles) on special differential forms.
In forthcoming papers the results are extended to normal cycles corresponding to finite unions of such sets, in particular to cell complexes.


53C65 Integral geometry
58A25 Currents in global analysis
Full Text: DOI


[1] A. D.Alexandrov, Die innere Geometrie der konvexen Fl?chen. Berlin 1955.
[2] A. Baddeley, Absolute curvatures in integral geometry. Math. Proc. Camb. Phil. Soc.88, 45-58 (1980). · Zbl 0448.53047 · doi:10.1017/S0305004100057340
[3] W.Blaschke, Vorlesungen ?ber Integralgeometrie. Leipzig 1936.
[4] T.Bonnesen und W.Fenchel, Theorie der konvexen K?rper. Ergeb. Math. Grenzgeb.3 (1934). · Zbl 0008.07708
[5] J.Dieudonn?, Grundz?ge der modernen Analysis 3. Berlin 1976.
[6] H. Federer, Curvature measures. Trans. Amer. Math. Soc.93, 418-491 (1959). · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[7] H.Federer, Geometric measure theory. Berlin-Heidelberg-New York 1969. · Zbl 0176.00801
[8] H. Federer, Colloquium lectures on geometric measure theory. Bull. Amer. Math. Soc. (3)84, 291-338 (1978). · Zbl 0392.49021 · doi:10.1090/S0002-9904-1978-14462-0
[9] W. Fenchel undB. Jessen, Mengenfunktionen und konvexe K?rper. Danske Vid. Selsk. Mat.-Fys. Medd. (3)16, 1-31 (1938).
[10] A.Gray and L.Vanhecke, The volume of tubes in a Riemannian manifold. Rend. Sem. Mat. Univers. Politecn. Torino (3)39, (1981). · Zbl 0511.53059
[11] H.Hadwiger, Vorlesungen ?ber Inhalt, Oberfl?che und Isoperimetrie. Berlin-Heidelberg-New York 1957. · Zbl 0078.35703
[12] G.Matheron, Random sets and integral geometry. New York-London-Sidney 1975. · Zbl 0321.60009
[13] A. V.Pogorelov, Extrinsic geometry of convex surfaces. Amer. Math. Soc. Transl. of Math. Monographs15, (1972). · Zbl 0251.53004
[14] L. A.Santal?, Integral geometry and geometric probability. Encyclopedia Math. Appl.1, 1976.
[15] R. Schneider, Parallelmengen mit Vielfachheit und Steiner-Formeln. Geom. Dedicata9, 111-127 (1980). · Zbl 0435.52004 · doi:10.1007/BF00156479
[16] R. Schneider, Curvature measures of convex bodies. Ann. Mat. Pura Appl. (4)66, 101-134 (1978). · Zbl 0389.52006
[17] R.Sulanke und P.Wintgen, Differentialgeometrie und Faserb?ndel. Berlin 1972. · Zbl 0327.53020
[18] H. Weyl, On the volume of tubes. Americ. J. Math.61, 461-472 (1939). · doi:10.2307/2371513
[19] M. Z?hle, Curvature measures and random sets I, II. Math. Nachr.119, 327-339 (1984); Z. Wahrsch. Verw. Gebiete (to appear). · Zbl 0553.60014 · doi:10.1002/mana.19841190129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.