Chou, J. H.; Hsia, Wei-Shen; Lee, Tan-Yu Epigraphs of convex set functions. (English) Zbl 0599.49014 J. Math. Anal. Appl. 118, 247-254 (1986). The authors characterize a convex set function with the aid of its epigraph and give a Fenchel duality theorem for such functions. Reviewer: C.Zălinescu Cited in 25 Documents MSC: 49N15 Duality theory (optimization) 28A10 Real- or complex-valued set functions 49J45 Methods involving semicontinuity and convergence; relaxation 54C08 Weak and generalized continuity 54C60 Set-valued maps in general topology 90C25 Convex programming Keywords:convex set function; epigraph; Fenchel duality theorem PDF BibTeX XML Cite \textit{J. H. Chou} et al., J. Math. Anal. Appl. 118, 247--254 (1986; Zbl 0599.49014) Full Text: DOI References: [1] Dolechi, S.; Kurcyusz, S., Convexité généralisée et optimization, C.R. Acad. Sci. Paris Sér. I Math., 283, 91-94 (1976) · Zbl 0341.49005 [2] Morris, R. J.T, Optimal constrained selection of measurable subset, J. Math. Anal. Appl., 70, 546-562 (1979) · Zbl 0417.49032 [3] Chou, J. H.; Hsia, W.-S; Lee, T.-Y, On multiple objective programming problems with set functions, J. Math. Anal. Appl., 105, 383-394 (1985) · Zbl 0564.90069 [5] Rudin, W., Functional Analysis (1973), McGraw-Hill: McGraw-Hill New York · Zbl 0253.46001 [6] Luenberger, D. G., Optimization by Vector Space Methods (1969), Wiley: Wiley New York · Zbl 0176.12701 [7] Lai, H. L.; Yang, S. S.; Hwang, G. R., Duality in mathematical programming of set functions: On Fenchel duality theorem, J. Math. Anal. Appl., 95, 223-234 (1983) · Zbl 0529.49007 [8] Yosida, K.; Hewitt, E., Finitely additive measures, Trans. Amer. Math. Soc., 72, 46-66 (1952) · Zbl 0046.05401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.