Albright, J. R.; Gavathas, E. P. Integrals involving Airy functions. (English) Zbl 0612.33004 J. Phys. A 19, 2663-2665 (1986). We show how to evaluate a large number of integrals involving Airy functions. The method uses the fact that the Wronskian has a very simple form. Cited in 6 Documents MSC: 33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\) Keywords:Airy functions PDF BibTeX XML Cite \textit{J. R. Albright} and \textit{E. P. Gavathas}, J. Phys. A, Math. Gen. 19, 2663--2665 (1986; Zbl 0612.33004) Full Text: DOI OpenURL Digital Library of Mathematical Functions: (9.11.11) ‣ §9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions (9.11.12) ‣ Examples ‣ §9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions (9.11.13) ‣ Examples ‣ §9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions (9.11.14) ‣ Examples ‣ §9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions §9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions