Abdullaev, A. S. Asymptotics of solutions of the generalized sine-Gordon equation, Painlevé’s third equation and d’Alembert’s equation. (English. Russian original) Zbl 0612.35115 Sov. Math., Dokl. 31, 45-47 (1985); translation from Dokl. Akad. Nauk SSSR 280, 265-268 (1985). Using the technique of his paper [ibid. 28, 726-729 (1983); translation from Dokl. Akad. Nauk SSSR 273, 1033-1036 (1983; Zbl 0554.34032)] the author studies the asymptotic behavior as \(x\to \infty\) of the decreasing self similar solutions of the generalized sine-Gordon equation \[ \partial^ 2u/\partial z\partial t=\nu \sin u+\mu zt \sin 2u\quad (x=zt). \] Reviewer: V.Vasil’ev Cited in 1 Document MSC: 35Q99 Partial differential equations of mathematical physics and other areas of application 35B40 Asymptotic behavior of solutions to PDEs 35C20 Asymptotic expansions of solutions to PDEs Keywords:asymptotic behavior; decreasing self similar solutions; sine-Gordon equation Citations:Zbl 0554.34032 PDF BibTeX XML Cite \textit{A. S. Abdullaev}, Sov. Math., Dokl. 31, 45--47 (1985; Zbl 0612.35115); translation from Dokl. Akad. Nauk SSSR 280, 265--268 (1985) Digital Library of Mathematical Functions: §32.11(iv) Third Painlevé Equation ‣ §32.11 Asymptotic Approximations for Real Variables ‣ Properties ‣ Chapter 32 Painlevé Transcendents