Boyd, John P. Orthogonal rational functions on a semi-infinite interval. (English) Zbl 0614.42013 J. Comput. Phys. 70, 63-88 (1987). The author obtains a sequence of orthogonal functions on [0,\(\infty [\) by taking a Möbius transform in the argument of the usual Chebyshev polynomials. He discusses their applicability to expansions of functions, solution of eigenproblems, and boundary value problems in seven numerical examples. Reviewer: J.Karlsson Cited in 3 ReviewsCited in 93 Documents MSC: 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 41A20 Approximation by rational functions Keywords:Möbius transform; Chebyshev polynomials; eigenproblems; numerical examples PDF BibTeX XML Cite \textit{J. P. Boyd}, J. Comput. Phys. 70, 63--88 (1987; Zbl 0614.42013) Full Text: DOI Link OpenURL References: [1] Boyd, J.P., J. comput. phys., 69, 112-142, (1987) [2] Grosch, C.E.; Orszag, S.A., J. comp. phys., 25, 273, (1977) [3] Boyd, J.P., J. comput. phys., 45, 43, (1982) [4] Boyd, J.P., J. comput. phys., 54, 382, (1984) [5] Boyd, J.P., J. comput. phys., 57, 454, (1985) [6] Boyd, J.P., J. comput. phys., 64, 266, (1986) [7] Norton, H.J., Comput. J., 7, 76, (1964) [8] Boyd, J.P., Physica D, 21, 227, (1986) [9] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods: theory and applications, (1977), SIAM Philadelphia · Zbl 0412.65058 [10] Cain, A.B.; Ferziger, J.H.; Reynolds, W.C., J. comput. phys., 56, 272, (1984) [11] Boyd, J.P., Monthly weather rev., 106, 1192, (1978) [12] Pedlosky, J., Geophysical fluid dynamics, (1979), Springer-Verlag New York · Zbl 0429.76001 [13] Boyd, J.P., J. math. phys., 19, 1445, (1978) [14] Stenger, F., SIAM rev., 23, 165, (1981) [15] Nayfeh, A.H., Perturbation methods, (1973), Wiley New York · Zbl 0375.35005 [16] Canuto, C.; Quarteroni, A., J. comput. phys., 60, 315, (1985) [17] Boyd, J.P., J. sci. comput., 1, 183, (1986) [18] Gary, J.; Helgason, R., J. comput. phys., 5, 169, (1970) [19] Trefethen, L.N.; Trummer, M.R., SIAM J. numer. anal., (1986), in press This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.