Makkai, M.; Pitts, A. M. Some results on locally finitely presentable categories. (English) Zbl 0615.18002 Trans. Am. Math. Soc. 299, 473-496 (1987). This paper gives, first, some variations on the definition of locally finitely presentable categories (L.F.P.) and their morphisms, and, on the duality with small categories with finite limits. Then it proves the following results: Given an L.F.P. \({\mathcal B}\) and a functor \(F: {\mathcal A}\to {\mathcal B}\) faithful and full on isomorphism, if \({\mathcal A}\) has limits and filtered colimits preserved by F, then \({\mathcal A}\) is L.F.P., and F has a left adjoint. In particular, if \({\mathcal A}\) is a full subcategory of an L.F.P. \({\mathcal B}\), closed under limits and filtered colimits, then \({\mathcal A}\) is L.F.P. Moreover, a characterization of those left exact functors \(I: {\mathcal C}\to {\mathcal D}\) between small categories with finite limits, for which the functor \(I^*: {\mathcal L}ex[{\mathcal D},{\mathcal S}et]\to {\mathcal L}ex[{\mathcal D},{\mathcal S}et]\) is full and faithful, is given. It provides a proof of the fact that, whenever a structure is represented as the structure of global sections of a sheaf, then the structure can always be constructed by using limits and filtered colimits on the stalks of the sheaf. Reviewer: Y.Diers Cited in 2 ReviewsCited in 17 Documents MSC: 18B99 Special categories 18C10 Theories (e.g., algebraic theories), structure, and semantics 03G30 Categorical logic, topoi 18A35 Categories admitting limits (complete categories), functors preserving limits, completions Keywords:global sections of sheaf; locally finitely presentable categories; small categories with finite limits; structure PDFBibTeX XMLCite \textit{M. Makkai} and \textit{A. M. Pitts}, Trans. Am. Math. Soc. 299, 473--496 (1987; Zbl 0615.18002) Full Text: DOI References: [1] J. Benabou, Introduction to bicategories, Lecture Notes in Math., vol. 47, Springer-Verlag, Berlin and New York, 1967, pp. 1-77. · Zbl 1375.18001 [2] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973. · Zbl 0276.02032 [3] M. Coste, Localisation dans les catégories de modeles, Thesis, Univ. Paris Nord, 1977. [4] David P. Ellerman, Sheaves of structures and generalized ultraproducts, Ann. Math. Logic 7 (1974), 163 – 195. · Zbl 0295.02031 · doi:10.1016/0003-4843(74)90014-X [5] Peter Gabriel and Friedrich Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, Vol. 221, Springer-Verlag, Berlin-New York, 1971 (German). · Zbl 0225.18004 [6] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0186.56802 [7] P. T. Johnstone, Topos theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1977. London Mathematical Society Monographs, Vol. 10. · Zbl 0368.18001 [8] P. T. Johnstone, Factorization theorems for geometric morphisms. I, Cahiers Topologie Géom. Différentielle 22 (1981), no. 1, 3 – 17. Third Colloquium on Categories (Amiens, 1980), Part II. · Zbl 0454.18007 [9] Model theory, Handbook of mathematical logic, Part A, North-Holland, Amsterdam, 1977, pp. 3 – 313. Studies in Logic and the Foundations of Math., Vol. 90. With contributions by Jon Barwise, H. Jerome Keisler, Paul C. Eklof, Angus Macintyre, Michael Morley, K. D. Stroyan, M. Makkai, A. Kock and G. E. Reyes. [10] Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. · Zbl 0705.18001 [11] M. Makkai, Remarks on papers by Y. Diers and H. Volger on sheaf representation, Abstracts Amer. Math. Soc. 5 (1984), #84T-18-76. [12] M. Makkai, Ultraproducts and categorical logic, Methods in mathematical logic (Caracas, 1983) Lecture Notes in Math., vol. 1130, Springer, Berlin, 1985, pp. 222 – 309. · Zbl 0582.03052 · doi:10.1007/BFb0075314 [13] Michael Makkai and Gonzalo E. Reyes, First order categorical logic, Lecture Notes in Mathematics, Vol. 611, Springer-Verlag, Berlin-New York, 1977. Model-theoretical methods in the theory of topoi and related categories. · Zbl 0357.18002 [14] Hugo Volger, Preservation theorems for limits of structures and global sections of sheaves of structures, Math. Z. 166 (1979), no. 1, 27 – 54. · Zbl 0379.02020 · doi:10.1007/BF01173845 [15] F. Mouen, Sur la caractérisation sémantique des catégories de structures, Diagrammes 11 (1984), M1 – M63 (French). · Zbl 0548.18002 [16] A. Andréka and I. Németi, A general axiomatizability theorem formulated in terms of cone-injective subcategories, Colloq. Math. Soc. J. Bolyai, Esztergom, 1977, pp. 17-35. [17] Hajnal Andréka and István Németi, Injectivity in categories to represent all first order formulas. I, Demonstratio Math. 12 (1979), no. 3, 717 – 732. · Zbl 0497.03029 [18] R. Guitart and C. Lair, Calcul syntaxique des modèles et calcul des formules internes, Diagrammes 4 (1980), GL1 – GL106 (French). · Zbl 0508.03030 [19] I. Németi and I. Sain, Cone implicational subcategories and some Birkhoff type theorems, Colloq. Math. Soc. J. Bolyai, Esztergom, 1977. [20] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963 – 1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. · Zbl 0234.00007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.