×

Sufficient conditions for oscillation and nonoscillation of neutral equations. (English) Zbl 0616.34063

The authors obtain sufficient conditions for all solutions of the neutral delay equation \[ (1)\quad \frac{d}{dt}[x(t)-P(t)x(t-\tau)]+Q(t)x(t- \sigma)=0,\quad 0\leq P(t)\leq 1, \] to oscillate. Theorem. If \(0<K_ 1\leq q(t)\leq K_ 2\) and if \[ \inf_{\mu >0,t\geq \tau}[P(t-\tau)Q(t)Q^{- 1}(t-\sigma)e^{\mu \sigma}+\mu^{-1}Q(t)e^{\mu \sigma}]>1, \] then every solution of (1) oscillates. This result is related to the known fact that all solutions of the equation \((d/dt)[x(t)-px(t-\tau)]+qx(t- \sigma)=0\) with constant coefficients oscillate if and only if the corresponding characteristic equation \(\lambda -p\lambda e^{-\lambda \tau}+qe^{-\lambda \sigma}=0\) has no real root.
Reviewer: U.Elias

MSC:

34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillations of first order neutral delay differential equations, J. Math. Anal. Appl., 120, 510-520 (1986) · Zbl 0566.34056
[2] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillation and asymptotic behavior of neutral differential equations with deviating arguments, Appl. Anal., 22, 1-19 (1986) · Zbl 0566.34057
[3] Grammatikopoulos, M. K.; Ladas, G.; Sficas, Y. G., Oscillation and asymptotic behavior of neutral equations with variable coefficients, Radovi Matematicki, 2, 279-303 (1986) · Zbl 0617.34067
[5] Hunt, B. R.; Yorke, J. A., When all solutions of \(x\)′ = − ∑ \(q_ix(t\) − \(T_i(t))\) oscilate, J. Differential Equations, 53, 139-145 (1984) · Zbl 0571.34057
[6] Kulenović, M. R.S; Ladas, G.; Meimaridou, A., Necessary and sufficient conditions for oscillations of neutral differential equations, J. Austral. Math. Soc. Ser. B, 28, 362-375 (1987) · Zbl 0616.34064
[7] Ladas, G.; Sficas, Y. G., Oscillations of neutral delay differential equations, Canad. Math. Bull., 29, 438-445 (1986) · Zbl 0566.34054
[8] Ladas, G.; Sficas, Y. G.; Stavroulakis, I. P., Nonoscillatory functional differential equations, Pacific J. Math., 115, 391-398 (1984) · Zbl 0528.34071
[9] Ladas, G.; Sficas, Y. G., Oscillation of Higher-Order Neutral Equations, J. Austral. Math. Soc. Ser. B, 27, 502-511 (1986) · Zbl 0566.34055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.