Tanner, Martin A.; Wong, Wing Hung The calculation of posterior distributions by data augmentation. (English) Zbl 0619.62029 J. Am. Stat. Assoc. 82, 528-541 (1987). Data augmentation is a scheme of augmenting observed data to make them easier to analyse; this arises in estimation problems where there are missing values. An algorithm for the Bayesian analysis of augmented data using simulation techniques is presented where the posterior distribution of the parameters of interest is obtained by using the predictive distribution of the augmenting or latent data given the observed data. The paper is followed by a discussion with contributions from A. P. Dempster, C. N. Morris, D. B. Rubin, S. J. Haberman and A. O’Hagan and a rejoinder by the authors. Reviewer: P.W.Jones Cited in 6 ReviewsCited in 531 Documents MSC: 62F15 Bayesian inference 65C05 Monte Carlo methods Keywords:Data augmentation; missing values; algorithm; simulation techniques; posterior distribution; predictive distribution; latent data PDF BibTeX XML Cite \textit{M. A. Tanner} and \textit{W. H. Wong}, J. Am. Stat. Assoc. 82, 528--541 (1987; Zbl 0619.62029) Full Text: DOI