×

Sur les caractères des groupes de Lie réductifs non connexes. (On the characters of non-connected reductive Lie groups). (French) Zbl 0622.22009

The paper deals with the following class of Lie groups G: the Lie algebra \({\mathfrak g}\) of G is reductive; G contains an abelian normal subgroup \(\Gamma\) so that \(\Gamma G_ 0\) is of finite index in G. (An essential point of the paper is that G is not assumed to being connected, nor even of Harish-Chandra class.) For such a group Duflo has described certain representations \(\Pi (f_ 0,\tau_ 0)\), parametrized by pairs \((f_ 0,\tau_ 0)\), where \(f_ 0\) is an element of \({\mathfrak g}^*\) whose centralizer \({\mathfrak g}(f_ 0)\) is a Cartan subalgebra and \(\tau_ 0\) is a unitary irreducible representation of a canonical double cover of \(G(f_ 0)\) so that \(\tau_ 0(\exp X)=e^{if_ 0(X)}\) and \(\tau_ 0(\epsilon)=-1\), \(\epsilon\) the non-trivial element of the kernel of the covering. (If G is of Harish-Chandra class, these are the tempered representations with regular infinitesimal character.)
The paper gives a formula for the character \(\Theta (f_ 0,\tau_ 0)\) of such a representation in a neighbourhood of 1 in the centralizer Z of each semisimple element s of G. The formula may be viewed as a formula of the Kirillov type adapted to Harish-Chandra’s method of descent: it represents the character in exponential coordinates as an integral over \(G\cdot f_ 0\cap {\mathfrak z}^*\), which is a union of a finite number of Z-orbits. For \(s=1\) it reduces to the usual Kirillov-type formula; for s regular to Harish-Chandra’s formula. (The proof in general uses these cases.) When G is connected the formula (for relative discrete series) is due to M. Duflo, G. Heckman, and M. Vergne [Mém. Soc. Math. Fr., Nouv. Sér. 15, 65-128 (1984; Zbl 0575.22014)].
Reviewer: W.Rossmann

MSC:

22E46 Semisimple Lie groups and their representations

Citations:

Zbl 0575.22014
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bouaziz, A., Sur les représentations des groupes de Lie réductifs non connexes, Math. Ann., 268, 539-555 (1984) · Zbl 0528.22013
[2] Bouaziz, A., Sur les caractères des groupes de Lie réductifs non connexes, C.R. Acad. Sci. Paris Sér. I Math., 301, n∘ 4, 93-96 (1985) · Zbl 0589.22013
[3] Clozel, L., Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. École Norm. Sup. (4), 15, 45-115 (1982) · Zbl 0516.22010
[4] Dixmier, J., Algèbres enveloppantes, (Cahiers Scientifiques (1974), Gauthiers-Villars: Gauthiers-Villars Paris), Fasicule XXXVII · Zbl 0422.17003
[5] Duflo, M., Fundamental-series representations of a semisimple Lie group, Functional Anal. Appl., 4, 122-126 (1970) · Zbl 0254.22007
[6] Duflo, M., Constructions de représentations unitaires d’un groupe de Lie, (Cours d’été au C.I.M.E. Cartona (1980) (1982), Liguori: Liguori Naples) · Zbl 0522.22011
[7] Duflo, M.; Heckman, G.; Vergne, M., Projection d’orbites, formule de Kirillov et formule de Blattner, Ser. Mat. Fis. (2), Mémoire n∘ 15, 65-128 (1984) · Zbl 0575.22014
[8] Duistermaat, J. J., Fourier Integral Operators (1973), Courant Institute, New York University: Courant Institute, New York University New York · Zbl 0272.47028
[9] Gantmacher, F., Canonical representation of automorphisms of a complex semisimple Lie group, Mat. Sb., 5, 47, 101-144 (1939) · JFM 65.1131.02
[10] Guillemin, V.; Sternberg, S., Geometric Asymptotics, (Math. Surveys n∘ 14 (1977), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0503.58018
[11] Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc., 119, 457-508 (1965) · Zbl 0199.46402
[12] Harish-Chandra, Representations of semisimple Lie groups, III, Trans. Amer. Math. Soc., 76, 234-253 (1954) · Zbl 0055.34002
[13] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc., 83, 98-163 (1956) · Zbl 0072.01801
[14] Harish-Chandra, Two theorems on semisimple Lie groups, Ann. of Math., 83, 74-128 (1966) · Zbl 0199.46403
[16] Hiraï, T., The characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ., 8, 313-363 (1968) · Zbl 0185.21503
[17] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74, 329-387 (1976) · Zbl 0134.03501
[18] Kirillov, A. A., Éléments de la théorie des représentations (1974), Éditions MIR: Éditions MIR Moscou
[19] Rossmann, W., Kirillov’s character formula for reductive Lie groups, Invent. Math., 48, 207-220 (1978) · Zbl 0372.22011
[20] Trombi, P. C., The tempered spectrum of a real semisimple Lie group, Amer. J. Math., 99, 57-75 (1977) · Zbl 0373.22007
[21] Trombi, P. C.; Varadarajan, V. S., Asymptotic behaviour of eigenfunctions on a semisimple Lie group; the discrete spectrum, Acta Math., 129, 237-280 (1972) · Zbl 0244.43006
[22] Varadarajan, V. S., Harmonic Analysis on Real Reductive Lie Groups, (Lecture Notes in Mathematics, Vol. 576 (1977), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0354.43001
[23] Vogan, D., Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J., 46, n∘ 4, 805-859 (1979) · Zbl 0421.22008
[24] Wolf, J. A., Unitary Representations on Partially Holomorphic Cohomology Spaces, (Mem. Amer. Math. Soc. n∘ 138 (1974), Amer. Math. Soc: Amer. Math. Soc Providence, R.I)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.