Yamasaki, Masayuki L-groups of crystallographic groups. (English) Zbl 0622.57022 Invent. Math. 88, 571-602 (1987). Let \(\Lambda\) be a finitely generated group mapping onto a crystallographic group of rank n with finite kernel. The main result of the paper shows that Quinn’s assembly map yields an isomorphism modulo 2- torsion between the homology groups \(H_*({\mathbb{R}}/\Lambda; {\mathbb{L}}(p))\) with spectral sheaf coefficients and the L-groups \(L_*^{- \infty}(\Lambda)\). Reviewer: M.Kolster Cited in 2 ReviewsCited in 11 Documents MSC: 57R67 Surgery obstructions, Wall groups 20H15 Other geometric groups, including crystallographic groups Keywords:finitely generated group; crystallographic group; assembly map; L-groups PDFBibTeX XMLCite \textit{M. Yamasaki}, Invent. Math. 88, 571--602 (1987; Zbl 0622.57022) Full Text: DOI EuDML References: [1] Cohen, M.: A course in simple-homotopy theory. Graduate texts in mathematics, vol. 10. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0261.57009 [2] Dress, A.W.M.: Induction and structure theorems for orthogonal representations of finite groups. Ann. Math.102, 291-325 (1975) · Zbl 0315.20007 · doi:10.2307/1971033 [3] Farkas, D.: Crystallographic groups and their mathematics. Rockey Mountain J. Math.11, 511-551 (1981) · Zbl 0477.20002 · doi:10.1216/RMJ-1981-11-4-511 [4] Farrell, F.T., Hsiang, W.C.: RationalL-groups. Comment. Math. Helv.52, 89-109 (1977) · Zbl 0364.57003 · doi:10.1007/BF02567358 [5] Farrell, F.T., Hsiang, W.C.: The Whitehead group of poly-(finite or cyclic) groups. J. Lond. Math. Soc.24, (2) 308-324 (1981) · Zbl 0514.57002 · doi:10.1112/jlms/s2-24.2.308 [6] Farrell, F.T., Hsiang, W.C.: Topological characterization of flat and almost flat Riemannian manifoldsM n (n?3,4). Am. J. Math.105, 641-672 (1983) · Zbl 0521.57018 · doi:10.2307/2374318 [7] Quinn, F.S.: A geometric formulation of surgery. Thesis, Princeton Univ., 1969 [8] Quinn, F.S.: Ends of maps I. Ann. Math.110, 275-331 (1979) · doi:10.2307/1971262 [9] Quinn, F.S.: Ends of maps II. Invent. Math.68, 353-424 (1982) · Zbl 0533.57008 · doi:10.1007/BF01389410 [10] Quinn, F.S.: Geometric algebra. Lect. Notes Math., vol. 1126, pp. 182-198. Berlin-Heidelberg-New York-Tokyo: Springer 1985 · Zbl 0589.57033 [11] Ranicki, A.A.: AlgebraicL-theory, II: Laurent extensions. Proc. Lond. Math. Soc.27, (3) 126-158 (1973) · Zbl 0269.18009 · doi:10.1112/plms/s3-27.1.126 [12] Ranicki, A.A.: The algebraic theory of surgery I, Foundations. Proc. Lond. Math. Soc.40, (3) 87-192 (1980) · Zbl 0471.57010 · doi:10.1112/plms/s3-40.1.87 [13] Ranicki, A.A.: Exact sequences in the algebraic theory of surgery. Math. Notes, vol. 26. Princeton: Princeton Univ. Press 1981 · Zbl 0471.57012 [14] Rourke, C.P., Sanderson, B.J.: ?-sets I: Homotopy theory. Quart. J. Math.22, 321-338 (1971) · Zbl 0226.55019 · doi:10.1093/qmath/22.3.321 [15] Spanier, E.H.: Algebraic topology. New York: McGraw Hill 1966 · Zbl 0145.43303 [16] Wall, C.T.C.: Surgery on compact manifolds. New York-London: Academic Press 1970 · Zbl 0219.57024 [17] Weiss, M.: Surgery and the generalized Kervaire invariant, I. Proc. Lond. Math. Soc.51, (3) 146-192 (1985) · Zbl 0617.57019 · doi:10.1112/plms/s3-51.1.146 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.