×

Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric. I. (English) Zbl 0628.53080

A general mathematical framework for the scattering of classical linear scalar fields in background gravitational fields, previously developed by the authors, is applied to the covariant Klein-Gordon equation in the exterior Schwarzschild metric. By the help of a suitable set of wave operators they study the asymptotic behaviour of the classical solutions near the Schwarzschild radius and at large distances. Using these classical results the authors discuss the corresponding quantum problem, especially questions concerning the Hawking effect. The Hartle-Hawking and Unruh states are constructed and their asymptotic and horizon behaviour is investigated.
Reviewer: W.Zündahl

MSC:

53C80 Applications of global differential geometry to the sciences
81T20 Quantum field theory on curved space or space-time backgrounds
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dimock, J.; Kay, B. S., Ann. Inst. Henri Poincaré A, 37, 93 (1982)
[2] Kay, B. S., (Lecture Notes in Mathematics, Vol. 905 (1982), Springer: Springer Berlin/New York), 272
[3] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics, Vol. III (1979), Academic Press: Academic Press New York/London), Scattering Theory · Zbl 0517.47006
[4] Chandrasekhar, S., (The Mathematical Theory of Black Holes (1983), Oxford Univ. Press: Oxford Univ. Press Oxford/New York) · Zbl 0511.53076
[5] Dimock, J., Gen. Relativ. Gravitation, 17, 353 (1985)
[6] Dimock, J.; Kay, B. S., Class. Quantum Grav., 3, 71 (1986)
[7] Hawking, S. W., Commun. Math. Phys., 43, 199 (1975)
[8] Wald, R. M., Commun. Math. Phys., 45, 9 (1975)
[9] Unruh, W. G., Phys. Rev. D, 14, 870 (1976)
[10] Hawking, S. W., Phys. Rev. D, 14, 2460 (1976)
[11] Isham, C. J., Ann. N.Y. Acad. Sci., 302, 114 (1977)
[12] Gibbons, G. W., (Hawking, S. W.; Israel, W., General Relativity, An Einstein Centenary Survey (1979), Cambridge Univ. Press: Cambridge Univ. Press Cambridge)
[13] Fulling, S. A., J. Phys. A, 10, 917 (1977)
[14] Parker, L., (Esposito, F. P.; Witten, L., Asymptotic Structure of Space-Times (1977), Plenum: Plenum New-York/London)
[15] Birrell, N. D.; Davies, P. C.W., (Quantum Fields in Curved Space (1982), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0972.81605
[16] Wald, R. M., (General Relativity (1984), Chicago Univ. Press: Chicago Univ. Press Chicago/London) · Zbl 0549.53001
[17] Hartle, J. R.; Hawking, S. W., Phys. Rev. D, 13, 2188 (1976)
[18] Israel, W., Phys. Lett. A, 57, 107 (1976)
[19] Kay, B. S., Commun. Math. Phys., 100, 57 (1985), Erratum Commun. Math. Phys., in press
[20] Kay, B. S., Helv. Phys. Acta, 58, 1017 (1985)
[21] Kay, B. S., Helv. Phys. Acta, 58, 1030 (1985)
[22] Sewell, G. L., Ann. Phys. (N.Y.), 141, 201 (1982)
[23] Haag, R.; Narnhofer, H.; Stein, U., Commun. Math. Phys., 94, 219 (1984)
[24] Dimock, J.; Kay, B. S., Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric II, J. Math. Phys., 27, 2520 (1986) · Zbl 0608.53065
[25] Kay, B. S., (Ruffini, R., Proceedings, Fourth, Marcel Grossmann Meeting on General Relativity. Proceedings, Fourth, Marcel Grossmann Meeting on General Relativity, Rome, 1985 (1986), North-Holland: North-Holland Amsterdam)
[26] Kay, B. S., (Gorini, V.; Frigerio, A., Proceedings, Conference on Fundamental Aspects of Quantum Theory. Proceedings, Conference on Fundamental Aspects of Quantum Theory, Villa Olmo, Como, Italy, 1985 (1986), Plenum: Plenum New York)
[29] Misner, C.; Thorne, K.; Wheeler, J. A., Gravitation (1973), Freeman: Freeman San Francisco/London
[30] Dollard, J. D., J. Math. Phys., 5, 729 (1964)
[31] Hawking, S. W.; Ellis, G. F.R., (The Large Scale Structure of Space-Time (1973), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0265.53054
[32] Dimock, J., Commun. Math. Phys., 77, 219 (1980)
[33] Leray, J., Hyperbolic partial differential equations, (Princeton lecture notes (mimeographed) (1952), Princeton University: Princeton University Princeton, N.J) · JFM 59.0402.01
[34] Choquet-Bruhat, Y., (de Witt, B. S.; Wheeler, J. A., Battelle rencontres (1967), Benjamin: Benjamin New York)
[35] Geroch, R., J. Math. Phys., 11, 437 (1970)
[36] Rindler, W., Am. J. Phys., 34, 1174 (1966)
[37] Fulling, S. A., Phys. Rev. D, 7, 2850 (1973)
[38] Wald, R. M., J. Math. Phys., 21, 218 (1980)
[39] Kay, B. S., Commun. Math. Phys., 71, 29 (1980)
[40] Isham, C. J., (Lecture Notes in Mathematics, Vol. 676 (1978), Springer: Springer New York/Berlin), 459
[41] Slawny, J., Commun. Math. Phys., 24, 151 (1972)
[42] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics, Vol. I (1980), Academic Press: Academic Press New York/London), Functional Analysis
[43] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics, Vol. II (1975), Academic Press: Academic Press New York/London), Fourier Analysis and Self-adjointness
[44] Wightman, A. S., (Levy, M., Cargese Lectures in Theoretical Physics: High Energy Electromagnetic Interactions and Field Theeory, 1964 (1967), Gordon & Breach: Gordon & Breach New York)
[46] Streater, R. F.; Wilde, I., Nucl. Phys. B, 24, 561 (1970)
[47] Bisognano, J. J.; Wichmann, E. H., J. Math. Phys., 17, 303 (1976)
[48] Boulware, D. G., Phys. Rev. D, 11, 1404 (1975)
[49] Kay, B. S., Commun. Math. Phys., 62, 55 (1978)
[50] Kay, B. S., J. Math. Phys., 20, 1712 (1979)
[51] Kay, B. S.; Wald, R. M., (Proceedings, VII National Congress on General Relativity and the Physics of Gravitation. Proceedings, VII National Congress on General Relativity and the Physics of Gravitation, Rapallo, Italy (1986), World Scientific: World Scientific Singapore), in press
[52] Kay, B. S.; Wald, R. M., (Doebner, H. D., Proceedings, XV International Conference on Differential Geometric Methods in Theoretical Physics. Proceedings, XV International Conference on Differential Geometric Methods in Theoretical Physics, Clausthal, West Germany (1986), World Scientific: World Scientific Singapore), to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.