×

Almost sure convergence theorems of weighted sums of random variables. (English) Zbl 0633.60049

Let \(\{X,X_ n\), \(n\geq 1\}\) be random variables and \(\{a_{ni}\), \(1\leq i\leq n\), \(n>1\}^ a \)triangular array of constants. Various conditions on \(\{a_{ni}\}\) and \(\{X_ n\}\) are given, under which \(\sum^{n}_{i=1}a_{ni}X_ i\to 0\) almost surely, as \(n\to 0.\)
In particular, if the \(X_ n\), \(n\geq 1\), are identically distributed, it is sufficient that \(E| X|^ r\) and \(\sum^{n}_{i=1}a^ 2_{ni}=O(1/n^{2/r})\) for some \(r\in (0,2).\)
This improves the result by Y. S. Chow and T. L. Lai, Ann. Probab. 1, 810-824 (1973; Zbl 0303.60025). In the i.i.d. case, E X\(=0\) and \(\max_{1\leq i\leq n}| a_{ni}| =O(1/n)\) are sufficient.
Reviewer: H.Hering

MSC:

60F15 Strong limit theorems

Citations:

Zbl 0303.60025
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmad I.A., Sankya 42 pp 262– (1982)
[2] Choi B.D., On Chung’s strong law of large numbers in general Banach spaces. · Zbl 0628.60012
[3] DOI: 10.1214/aoms/1177699140 · Zbl 0152.16905 · doi:10.1214/aoms/1177699140
[4] DOI: 10.1214/aop/1176996847 · Zbl 0303.60025 · doi:10.1214/aop/1176996847
[5] DOI: 10.1007/BF01013465 · Zbl 0438.60027 · doi:10.1007/BF01013465
[6] DOI: 10.1214/aoms/1177700167 · Zbl 0132.38604 · doi:10.1214/aoms/1177700167
[7] Padgett W.J., Lecture Notes in Mathematics 360 (1973)
[8] Pruitt W.E., J. Math. Mech 15 pp 769– (1966)
[9] Stout W.F., Ann. Math. Statist 39 pp 1549– (1968)
[10] Stout W.F., Almost Sure Convergence (1974) · Zbl 0321.60022
[11] Taylor R.L., Lecture Notes in Mathematics
[12] DOI: 10.1007/BF00532738 · Zbl 0548.60028 · doi:10.1007/BF00532738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.