## Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations.(English)Zbl 0634.58020

Suppose that M is a closed Riemannian manifold of negative curvature. The geodesic flow $$\phi$$ $$t_ M$$ of M, which is defined as a smooth flow on the unit tangent bundle $$V_ M=\{v\in TM:| v| =1\}$$ of M, is known to be Anosov. In other words, the tangent bundle $$TV_ M$$ of the phase space $$V_ M$$ admits a unique $$\phi$$ $$t_ M$$-invariant continuous splitting $$TV_ M=E$$ $$-+E$$ $$0+E$$ $$+$$ into subbundles satisfying the following conditions: (i) E 0 is of dimension one and tangent to the flow; (ii) For each $$\xi ^{\pm}\in E^{\pm}$$, $$d\phi$$ $$t_ M\xi ^{\pm}$$ contracts exponentially as $$t\to \pm \infty$$. We call this splitting the Anosov splitting of M, and the purpose of the paper is to indicate an obstruction to the smoothness of the Anosov splitting.
More precisely we prove the following theorem. Let M be a closed Riemannian manifold of dimension $$\geq 3$$ whose sectional curvature K satisfies the pinching condition $$-9/4<K\leq -1$$. If the Anosov splitting of M is $$C^{\infty}$$, then the geodesic flow of M is isomorphic to that of a certain closed Riemannian manifold of constant negative curvature in the sense that there exists a $$C^{\infty}$$ diffeomorphism $$f: V_ M\to V_ N$$ such that $$f\circ \phi$$ $$t_ M=\phi$$ $$t_ N\circ f$$ for all $$t\in {\mathbb{R}}$$.
Reviewer: M.Kanai

### MSC:

 37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.) 53D25 Geodesic flows in symplectic geometry and contact geometry 37C85 Dynamics induced by group actions other than $$\mathbb{Z}$$ and $$\mathbb{R}$$, and $$\mathbb{C}$$ 53C22 Geodesics in global differential geometry

### Keywords:

Anosov flow; Anosov splitting; geodesic flow
Full Text:

### References:

 [1] Sullivan, Riemann Surfaces and Related Topics pp 465– (1981) [2] Tanaka, J. Math. Soc. 17 pp 103– (1965) · Zbl 0132.16303 · doi:10.2969/jmsj/01720103 [3] Mostow, Strong Rigidity of Locally Symmetric Spaces (1973) [4] DOI: 10.1215/S0012-7094-74-04112-X · Zbl 0283.58011 · doi:10.1215/S0012-7094-74-04112-X [5] Ghys, Ann. Sci. Éc. Norm. Sup. 20 pp 250– (1987) [6] Eberlein, Pacific J. Math. 46 pp 45– (1973) · Zbl 0264.53026 · doi:10.2140/pjm.1973.46.45 [7] DOI: 10.2307/1970869 · Zbl 0217.47304 · doi:10.2307/1970869 [8] Burns, Ergod. Th. & Dynam. Sys. 5 pp 307– (1985) [9] Berger, Ann. Sci. Ec. Norm. Sup. 74 pp 85– (1957) [10] none, Proc. Steklov Inst. Math. (1969) [11] Anosov, Trudy Math. Inst. Steklov 90 pp none– (1967) [12] Abraham, Foundations of Mechanics (1978) [13] Mostow, Publ. IHES 34 pp 53– (1968) · Zbl 0189.09402 · doi:10.1007/BF02684590 [14] Mostow, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math. 9 pp 413– (1966) · Zbl 0199.06702 · doi:10.1090/pspum/009/0206140 [15] Kobayashi, Foundations of Differential Geometry I (1963) [16] none, J. Math. Mech. 14 pp 513– (1965) [17] Kobayashi, J. Math. Mech. 13 pp 875– (1964) [18] Katok, Ergod. Th. & Dynam. Sys. 2 pp 339– (1982) [19] Hurder, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows · Zbl 0725.58034 · doi:10.1007/BF02699130 [20] Hirsch, J. Diff. Geom. 10 pp 225– (1975) [21] Hirsch, Proc. Sympos. Pure Math. 14 pp 133– (1970) [22] Gromov, Three remarks on geodesic dynamics and fundamental group · Zbl 1002.53028 [23] Weinstein, Lectures on Symplectic Manifolds, Regional Conference Series in Math (1977) · doi:10.1090/cbms/029 [24] DOI: 10.1016/0001-8708(71)90020-X · Zbl 0213.48203 · doi:10.1016/0001-8708(71)90020-X [25] Thurston, Lecture Notes (1979) [26] DOI: 10.2307/1993971 · Zbl 0151.28801 · doi:10.2307/1993971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.