Crandall, Michael G.; Lions, Pierre-Louis Hamilton-Jacobi equations in infinite dimensions. II: Existence of viscosity solutions. (English) Zbl 0639.49021 J. Funct. Anal. 65, 368-405 (1986). [For part I, see the authors, ibid. 62, 379-396 (1985; Zbl 0627.49013).] This is the second paper of a series devoted to the study of Hamilton- Jacobi equations in infinite dimensions. Existence results are obtained under much the same assumptions for the corresponding results in finite dimensions. A new convergence theorem concerning the convergence of solutions of the approximate problems is proved and then used to obtain a general existence result. By several reduction processes, the general existence result is reduced to existence for Lipschitz continuous Hamiltonians, which is obtained by the differential game method. Reviewer: S.Lenhart Cited in 3 ReviewsCited in 63 Documents MSC: 49L99 Hamilton-Jacobi theories 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35F30 Boundary value problems for nonlinear first-order PDEs Keywords:viscosity solutions; Hamilton-Jacobi equations in infinite dimensions Citations:Zbl 0627.49013 PDFBibTeX XMLCite \textit{M. G. Crandall} and \textit{P.-L. Lions}, J. Funct. Anal. 65, 368--405 (1986; Zbl 0639.49021) Full Text: DOI References: [1] Barbu, V.; Da Prato, G., Hamilton-Jacobi Equations in Hilbert Spaces (1983), Pitman: Pitman London · Zbl 0508.34001 [2] Barbu, V.; Da Prato, G., Hamilton-Jacobi Equations in Hilbert Spaces; Variational and Semigroup Approach, Scuola Normale Superiore report (1984), Pisa [3] Barles, G., Existence results for first-order Hamilton-Jacobi equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1, 325-340 (1984) · Zbl 0574.70019 [4] Bourgain, J., La propriété de Radon-Nikodym, (Cours de \(3^e\) cycle polycopié No. 36 (1979), Université P. et M. Curie: Université P. et M. Curie Paris) · Zbl 0423.46011 [5] Crandall, M. G.; Evans, L. C.; Lions, P. L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282, 487-502 (1984) · Zbl 0543.35011 [6] Crandall, M. G.; Lions, P. L., Condition d’unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C.R. Acad. Sci. Paris, 292, 183-186 (1981) · Zbl 0469.49023 [7] Crandall, M. G.; Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277, 1-42 (1983) · Zbl 0599.35024 [8] Crandall, M. G.; Lions, P. L., Solutions de viscosité non bornées des équations de Hamilton-Jacobi du premier ordre, C.R. Acad. Sci. Paris, 298, 217-220 (1984) · Zbl 0565.49022 [9] M. G. Crandall and P. L. LionsNonlinear Anal. Theory Methods Appl.; M. G. Crandall and P. L. LionsNonlinear Anal. Theory Methods Appl. · Zbl 0603.35016 [10] Crandall, M. G.; Lions, P. L., Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions, J. Funct. Anal., 62, 379-396 (1985) · Zbl 0627.49013 [11] M. G. Crandall and P. L. Lions; M. G. Crandall and P. L. Lions · Zbl 0678.35009 [12] Crandall, M. G.; Lions, P. L., Solutions de viscosité pour les équations de Hamilton-Jacobi dans des espaces de Banach, C.R. Acad. Sci. Paris, 300, 67-70 (1985) · Zbl 0588.35018 [13] Crandall, M. G.; Newcomb, R., Viscosity solutions of Hamilton-Jacobi equations at the boundary, (Proc. Amer. Math. Soc., 94 (1985)), 283-290 · Zbl 0575.35008 [14] Evans, L. C.; Souganidis, P. E., Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. J. Math., 33, 773-797 (1984) · Zbl 1169.91317 [15] Ishii, H., Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33, 721-748 (1984) · Zbl 0551.49016 [16] Ishii, H., Remarks on the existence of viscosity solutions of Hamilton-Jacobi equations, Bull. Fac. Sci. Engrg. Chuo Univ., 26, 5-24 (1983) · Zbl 0546.35042 [17] H. IshiiFunkcial. Ekvac.; H. IshiiFunkcial. Ekvac. · Zbl 0614.35011 [18] Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations (1982), Pitman: Pitman London · Zbl 1194.35459 [19] Lions, P. L., Existence results for first-order Hamilton-Jacobi equations, Richerche Mat., 32, 1-23 (1983) · Zbl 0552.70012 [20] Stegall, C., Optimization of functions on certain subsets of Banach spaces, Math. Ann., 236, 171-176 (1978) · Zbl 0365.49006 [21] Souganidis, P. E., Existence of viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations, 56, 345-390 (1985) · Zbl 0506.35020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.