Fiksel, Thomas Edge-corrected density estimators for point processes. (English) Zbl 0644.62044 Statistics 19, No. 1, 67-75 (1988). Summary: Edge-corrected kernel estimators are given for the product density, for the density of the nearest-neighbour-distance distribution function and for the density of the spherical-contact distribution function of stationary and isotropic point processes. The estimators for the product density are compared with well-known non-edge-corrected estimators by simulation methods. The use of the estimators is demonstrated by a biological example. Cited in 15 Documents MSC: 62G05 Nonparametric estimation 62M09 Non-Markovian processes: estimation 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) Keywords:Edge-corrected kernel estimators; product density; nearest-neighbour- distance distribution function; spherical-contact distribution; stationary and isotropic point processes; non-edge-corrected estimators; simulation PDF BibTeX XML Cite \textit{T. Fiksel}, Statistics 19, No. 1, 67--75 (1988; Zbl 0644.62044) Full Text: DOI References: [1] Brillinger D.R., In: Stochastic Processes and Related Topics pp 55– (1975) [2] DOI: 10.1007/BF01915223 · Zbl 0576.62055 [3] Krickeberg K., Ecote d’ de Probabilités de Saint Flour X-1980 pp 205– (1982) [4] Ohser J., On the Efficiency of Edge Correction for Spatial Point Precesses (1986) [5] Ohser J., Biom. J. 23 pp 523– (1982) · Zbl 0494.60048 [6] DOI: 10.2307/3212829 · Zbl 0364.60087 [7] Ripley B.D., J. Roy. Statist. Soc. 2 pp 172– (1977) [8] DOI: 10.1002/0471725218 [9] Ripley B.D., In: Stochastic Geometry Geometric Statistics, Stereology. (1983) [10] Stoyan D., Math. Nachr. 116 pp 63– (1984) · Zbl 0554.60055 [11] Stoyan D., Elektron. Informationsverarb. u. Kybern. 20 pp 285– (1984) [12] Stoyan D., Stochastische Geometrie (1985) [13] Upton G., Point Pattern and Quantitative Data (1985) · Zbl 0646.62085 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.