×

An inequality about irreducible factors of integer polynomials. (English) Zbl 0648.12002

Let \(F(X)=a_0+a_1X+a_2X^2+ \ldots +a_dX^d\) be a polynomial of degree \(d\) with complex coefficients. The author gives an upper bound for \(\max \{| F(z)|: | z| =1\}\) in the case when \(F(X)\) is an irreducible polynomial with integral coefficients. The upper bound involves the measure of \(F\), namely, \(M(F)=| a_d| \prod^{d}_{j=1} \max \{1, |z_j|\}\), where \(z_1,\ldots, z_d\) are the complex roots of \(F\). A special case of the author’s result is the following inequality: \[ \left(\sum^d_{i=0}| a_i|^2\right)^{1/2}\le e^{\sqrt{d}}(d+2\sqrt{d}+2)^{1+\sqrt{d}}M(F)^{1+\sqrt{d}}. \]

MSC:

11R09 Polynomials (irreducibility, etc.)
11C08 Polynomials in number theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bombieri, E.; Vaaler, J. D., On Siegel’s lemma, Invent. Math., 73, 539-560 (1983) · Zbl 0533.10030
[2] Bombieri, E.; Vaaler, J. D., Polynomials with low height and prescribed vanishing, (Proc. Conf. of Number Theory. Proc. Conf. of Number Theory, Stillwater, Oklahoma (July 1984)) · Zbl 0629.10024
[3] Cerlienco, L.; Mignotte, M.; Piras, F., Computing the measure of a polynomial, J. Symbolic. Comput., 4, No. 1, 21-34 (1987) · Zbl 0629.12002
[4] Durand, A., A propos d’une théorème de S. Berstein sur la dérivée d’un polynôme, C. R. Acad. Sci. Paris Sér. I Math., 290, 523-525 (1980) · Zbl 0438.30003
[5] Durand, A., Quelques aspects de la théorie analytique des polynômes (1984), Université de Limoges, notes
[6] Donaldson, J. D.; Rahman, Q. I., Inequalities for polynomials with a prescribed zero, Pacific J. Math., 41, 375-378 (1983) · Zbl 0235.30001
[7] Erdös, P.; Vaughan, R. C., Bounds for the \(r\) th coefficients of cyclotomic polynomials, J. London Math. Soc., 8, 2, 393-400 (1974) · Zbl 0295.10014
[8] Güting, R., Polynomials with multiple zeroes, Mathematika, 14, 181-196 (1967) · Zbl 0173.05101
[9] Landau, E., Sur quelques théorèmes de M. Petrovic relatifs aux zéros des fonctions analytiques, Bull. Soc. Math. France, 33, 251-261 (1905) · JFM 36.0467.01
[10] Lenstra, A. K.; Lenstra, H. W.; Lovàsz, L., Factoring polynomials with rational integer coefficients, Math. Ann., 261, 515-531 (1982) · Zbl 0488.12001
[11] Mignotte, M., An inequality about factors of polynomials, Math. Comp., 28, 1153-1157 (1974) · Zbl 0299.12101
[12] Mignotte, M., Sur la répartition des racines des polynômes, (Journées de Théorie des Nombres. Journées de Théorie des Nombres, Caen (Septembre 1980))
[13] Ostrowski, A. M., On an inequality of J. Vicente Gonçalves, Univ. Lisboa Revista Fac. Ci A. Ci Mat., 115-119 (1960) · Zbl 0116.04002
[14] Specht, W., Abschätzungen der Wurzeln algebraischer Gleichungen, Math. Z., 52, 310-321 (1949) · Zbl 0033.14502
[15] Vicente Gonçalves, J., L’inégalité de W. Specht, Univ. Lisboa Revista Fac. Ci A. Ci Mat., 1, 167-171 (1950) · Zbl 0039.01205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.