Hammouri, H.; Gauthier, J. P. Bilinearization up to output injection. (English) Zbl 0648.93024 Syst. Control Lett. 11, No. 2, 139-149 (1988). Nonlinear analytic single-input single-output systems of the form \[ (\Sigma)\quad x'=Z_ 1(x)+u Z_ 2(x);\quad y=h(x) \] are considered. The authors investigate the existence of a local change of coordinates \(z=T(x)\), \(T(0)=0\), transforming (\(\Sigma)\) to \[ (\Sigma ')\quad z'=Az+u Bz+\Phi (u,y);\quad y=Cz. \] Necessary and sufficient conditions are given for systems which are observable (in the sense of the rank condition). Reviewer: A.Bacciotti Cited in 28 Documents MSC: 93C10 Nonlinear systems in control theory 93B17 Transformations 93C15 Control/observation systems governed by ordinary differential equations Keywords:output injection; bilinear systems; bilinearization; Nonlinear analytic single-input single-output systems PDFBibTeX XMLCite \textit{H. Hammouri} and \textit{J. P. Gauthier}, Syst. Control Lett. 11, No. 2, 139--149 (1988; Zbl 0648.93024) Full Text: DOI References: [1] Bestle, D.; Zeitz, M., Canonical from design for nonlinear time variable systems, Internat. J. Control., 38, 419-431 (1981) · Zbl 0521.93012 [2] Funahashi, Y., Stable state estimator for bilinear systems, Internat. J. Control., 29, 181-188 (1979) · Zbl 0407.93045 [3] Fliess, M.; Kupka, I., A finiteness criterion for nonlinear input-output differential systems, SIAM J. Control Optim., 21, 721-728 (1983) · Zbl 0529.93031 [4] Gauthier, J. P.; Bornard, G., Observability for any \(u(t)\) of a class of nonlinear systems, IEEE Trans. Automat. Control, 26, 922-926 (1981) · Zbl 0553.93014 [5] Gauthier, J. P.; Celle, F., Theory of dynamic observers for a class of nonlinear systems, MTNS (June 1987), Phoenix, AZ [6] J.P. Gauthier, F. Celle, D. Kazakos and G. Sallet, An observation theory for group systems, Submitted for publication.; J.P. Gauthier, F. Celle, D. Kazakos and G. Sallet, An observation theory for group systems, Submitted for publication. [7] Grasselli, O.; Isidori, A., An existence theorem for observers of bilinear systems, IEEE Trans. Automat. Control., 26, 1299-1300 (1981) · Zbl 0479.93015 [8] Hara, S.; Furuta, K., Minimal order state observers for bilinear systems, Internat. J. Control, 24, 705-718 (1976) · Zbl 0336.93010 [9] Krener, A. J.; Isidori, A., Linearization by output injection and nonlinear observers, Systems Control Lett., 3, 47-52 (1983) · Zbl 0524.93030 [10] Krener, D.; Respondek, W., Nonlinear observers with linearizable error dynamics, SIAM J. Control Optim., 23, 197-216 (1985) · Zbl 0569.93035 [11] Levine, J.; Marino, R., Nonlinear systen immersion, observers and finite filters, Systems Control Lett., 7, 133-142 (1987) · Zbl 0592.93030 [12] Sussmann, H. J., Single input-observability of continuous-time systems, Math. Systems Theory, 12, 371-393 (1979) · Zbl 0422.93019 [13] Williamson, D., Observability of bilinear systems, with application to biological control, Automatica, 13, 243-245 (1977) · Zbl 0351.93008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.