Herer, Wojciech Martingales à valeurs fermées bornées d’un espace métrique. (Martingales with values in closed bounded subsets of a metric space). (French) Zbl 0652.60015 C. R. Acad. Sci., Paris, Sér. I 305, 275-278 (1987). We give [developing an idea of S. Doss,onal empirical processes for \(\Phi\)-mixing and a-mixing stochastic vectors to appropriate Gaussian processes under weaker conditions than K. J. Yoshihara [Z. Wahrscheinlichkeitstheor. Verw. Geb. 33, 133-137 (1975; Zbl 0304.60019)], i.e. either \[ \sum \Phi^{1/2}(2^ n)<\infty,\quad or\quad a(n)=O(n^{-r}), \] where \(r>2\), if \(p=1\); \(r>p+1\), if \(p\geq 2\) and even; \(r>p^ 2/(p-1)\), if \(p\geq 3\) and odd. Cited in 2 Documents MSC: 60B99 Probability theory on algebraic and topological structures 60G44 Martingales with continuous parameter Keywords:theorems of convergence for martingales Citations:Zbl 0304.60019 PDF BibTeX XML Cite \textit{W. Herer}, C. R. Acad. Sci., Paris, Sér. I 305, 275--278 (1987; Zbl 0652.60015) OpenURL