Lii, Keh-Shin; Rosenblatt, Murray Nonminimum phase non-Gaussian deconvolution. (English) Zbl 0658.60069 J. Multivariate Anal. 27, No. 2, 359-374 (1988). From the authors’ abstract: A procedure for deconvolution of nonminimum phase non-Gaussian time-series based on the estimation of higher order (greater than two) spectra is given. Knowledge of cumulant spectra of order greater than two allows estimation of the phase of the wavelet. Computational details of the method for estimating the phase of the wavelet are given. There are simulated illustrative examples. Reviewer: M.P.Mokljacuk Cited in 5 Documents MSC: 60G35 Signal detection and filtering (aspects of stochastic processes) 62M15 Inference from stochastic processes and spectral analysis 86A15 Seismology (including tsunami modeling), earthquakes Keywords:cumulant spectra; deconvolution; non-Gaussian time-series PDFBibTeX XMLCite \textit{K.-S. Lii} and \textit{M. Rosenblatt}, J. Multivariate Anal. 27, No. 2, 359--374 (1988; Zbl 0658.60069) Full Text: DOI References: [1] Donoho, D., On minimum entropy deconvolution, (Findley, D. F., Applied Time Series Analysis II (1981)), 565-608, New York/London · Zbl 0481.62075 [2] Jurkevics, A.; Wiggins, R., A critique of seismic deconvolution methods, Geophysics, 49, 2109-2116 (1984) [3] Lii, K. S.; Rosenblatt, M., Deconvolution and estimation of transfer function phase and coefficients for nonGaussian linear processes, Ann. Statist., 10, 1195-1208 (1982) · Zbl 0512.62090 [4] Lii, K. S.; Rosenblatt, M., Remarks on nonGaussian linear processes with additive Gaussian noise, Lecture Notes in Statistics, Vol. 26, 185-197 (1984) · Zbl 0568.62078 [5] Lii, K. S.; Rosenblatt, M., Deconvolution of non-Gaussian linear processes with vanishing spectral values, (Proc. Nat’l. Acad. Sci. USA, 86 (1986)), 199-200 · Zbl 0582.60052 [6] Lii, K. S.; Rosenblatt, M.; Van Atta, C., Bispectral measurements in turbulence, J. Fluid Mech., 77, 45-62 (1976) [7] Matsuoka, T.; Ulrych, T., Phase estimation using the bispectrum, (Proc. IEEE, 72 (1984)), 1403-1411 [8] Peacock, K. L.; Treitel, S., Predictive deconvolution: Theory and practice, Geophysics, 34, 155-169 (1969) [9] Rosenblatt, M., Linear processes and bispectra, J. Appl. Probab., 17, 265-270 (1980) · Zbl 0423.60043 [10] Rosenblatt, M., (Stationary Sequences and Random Fields (1985), Birkhaüser: Birkhaüser Basel) · Zbl 0597.62095 [11] Treitel, S.; Wang, R. J., The determination of digital Wiener filters from an ill-conditioned system of normal equations, Geophys. Prospecting, 24, 317-327 (1976) [12] Wiggins, R., Minimum entropy deconvolution, Geoexploration, 16, 21-35 (1978) [13] Wiggins, R., Entropy guided deconvolution, Geophysics, 50, 2720-2726 (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.