×

Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. (English) Zbl 0659.65132

New methodologies are formulated for following fronts propagating with curvature-dependent speed, which models, among other things, crystal growth and flame propagation. The algoritms are based on an approximation of the Hamilton-Jacobi formulations for such problems. The paper is carefully written with numerical exemplification (including detailed graphics) which shows that the numerical schemes accurately capture the formation of sharp gradients and cusps in the moving fronts.
Reviewer: R.S.Anderssen

MSC:

65Z05 Applications to the sciences
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35L65 Hyperbolic conservation laws
80A25 Combustion
82D25 Statistical mechanics of crystals
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Barles, G., (Report No. 464 (1985), Institut National de Recherche en Informatique et en Automatique (INRIA): Institut National de Recherche en Informatique et en Automatique (INRIA) Sophia Antipolis, France), (unpublished)
[2] Brakke, K. A., The Motion of a Surface by Its Mean Curvature (1978), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0386.53047
[3] Chorin, A. J., J. Comput. Phys., 57, 472 (1985) · Zbl 0555.65085
[4] Chorin, A. J., J. Comput. Phys., 35, 1 (1980) · Zbl 0425.76086
[5] Crandall, M. G.; Lions, P. L., Math. Comp., 43, 1 (1984) · Zbl 0556.65076
[6] Frankel, M. L.; Sivashinsky, G. I., Comb. Sci. Technol., 29, 207 (1982)
[7] Gage, M., Duke Math. J., 50, 1225 (1983) · Zbl 0534.52008
[8] Gage, M., Invent. Math., 76, 357 (1984) · Zbl 0542.53004
[9] Gage, M.; Hamilton, R. S., J. Differential Geom., 23, 69 (1986) · Zbl 0621.53001
[10] Grayson, M., J. Differential Geom., 26, 285 (1988)
[11] Grayson, M., A Short Note on the Evolution of a Surfaces via Mean Curvature (1987), Stanford University Mathematics Dept, preprint
[12] Godunov, S. K., Mat. Sb., 47, 271 (1959)
[13] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., J. Comput. Phys., 71, 231 (1987) · Zbl 0652.65067
[14] Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S., Appl. Num. Math., 2, 237 (1986)
[15] Huisken, G., J. Differential Geom., 20, 237 (1984) · Zbl 0556.53001
[16] Kutnetsov, N. N., (Miller, J. J.H., Topics in Numerical Analysis III (1977), Academic Press: Academic Press New York) · Zbl 0416.00016
[17] Kruz’kov, S. N., Math. U.S.S.R. Sb., 10, 217 (1970) · Zbl 0215.16203
[18] Landau, L., Acta Physiocochim. URSS, 19 (1944)
[19] Langer, J. S., Rev. Mod. Phys., 52, 1 (1980)
[20] Langer, J. S.; Muller-Krumhaar, H., Phys. Rev. A, 27, 499 (1983)
[21] Lay, P. D., Comm. Pure Appl Math., 10, 537 (1957) · Zbl 0081.08803
[22] Markstein, G. H., J. Aero. Sci., 18, 199 (1951)
[23] Markstein, G. H., Non-Steady Flame Propagation (1964), Pergammon: Pergammon MacMillan C., New York · Zbl 0077.19201
[24] Mullins, W. W.; Sekerka, R. F., J. Appl Phys., 34, 2885 (1963)
[25] Nichols, F. A.; Mullins, W. W., Trans. Metall Soc. RIME, 223, 1840 (1965)
[26] Noh, W.; Woodward, P., (van de Vooran, A. I.; Zandberger, P. J., Proceedings, Fifth International Conference on Fluid Dynamics (1976), Springer-Verlag: Springer-Verlag New York/Berlin)
[27] Osher, S., SIAM J. Num. Anal., 21, 217 (1984) · Zbl 0592.65069
[28] Oleinik, O. A., T. Moscow Mat. Obsc., 5, 433 (1956) · Zbl 0072.09802
[29] Situ, C.; Osher, S., J. Comput. Phys., 77, 439 (1988) · Zbl 0653.65072
[30] Pamplin, B. R., Crystal Growth (1975), Pergammon: Pergammon New York
[31] Sethian, J. A., (CPAM Rep. 79. CPAM Rep. 79, Ph.D. dissertation (June 1982), University of California: University of California Berkeley, California)
[32] Sethian, J. A., Commun. Math. Phys., 101, 487 (1985) · Zbl 0619.76087
[33] Sethian, J. A., (Concus, P.; Finn, R., Variational Methods for Free Surface Interfaces (1987), Springer-Vertag: Springer-Vertag New York) · Zbl 0605.00007
[34] Sethian, J. A., J. Comput. Phys., 54, 425 (1984) · Zbl 0594.76047
[35] Sethian, J. A., (Engquist, B.; Majda, A.; Osher, S., Computational Fluid Mechanics and Reacting Gas Flows (1986), Institute for Mathematics and Its Applicationsm Univ. of Minnesota)
[36] J.A. Sethian and S. Osher, Level Set Algorithms for Hele-Shaw Flow, J. Comput. Phys., in preparation.; J.A. Sethian and S. Osher, Level Set Algorithms for Hele-Shaw Flow, J. Comput. Phys., in preparation.
[37] Sivashinsky, G. I., Acta Astronaut., 4, 1177 (1977) · Zbl 0427.76047
[38] Turnbull, D., (Seitz, F.; Turnbull, D., Solid State Physics I, 3 (1956), Academic Press: Academic Press New York) · Zbl 0074.45003
[39] Zabusky, N. J.; Overman, E. A., J. Comput. Phys., 52, 351 (1984)
[40] Zeldovich, Y. B., Comb. Flame, 40, 225 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.