Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation. (English) Zbl 0666.35012

For a smooth bounded domain \(\Omega \subset R^ n\), \(n\leq 3\), and \(\epsilon\) a real parameter, consider the hyperbolic equation \[ \epsilon u_{tt}+u_ t-\Delta u=-f(u)-g\quad in\quad \Omega \] with Dirichlet boundary conditions. Under certain conditions on the function f(u), this equation has a compact attractor \({\mathcal A}_{\epsilon}\) in \(H^ 1_ 0\times L^ 2\). For \(\epsilon =0\), the parabolic equation also has a compact attractor which can be naturally embedded into a compact set \({\mathcal A}_ 0\) in \(H^ 1_ 0\times L_ 2\). The authors demonstrate that, for any neighborhood of U, the set \({\mathcal A}_{\epsilon}\subset U\) for \(\epsilon\) small.
Reviewer: M.Witten


35B40 Asymptotic behavior of solutions to PDEs
35B25 Singular perturbations in context of PDEs
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
35L70 Second-order nonlinear hyperbolic equations
Full Text: DOI


[1] Babin, A. V.; Vishik, M. I., Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62, 441-491 (1983) · Zbl 0565.47045
[2] Babin, A. V.; Vishik, M. I., Attracteurs maximaux dans les équations aux dérivées partielles (Notes rédigées par A. Haraux) (1984), Collège de France, Pittman, 1985
[3] Billotti, J. E.; LaSalle, J. P., Periodic dissipative processes, Bull. Amer. Math. Soc., 6, 1082-1089 (1971) · Zbl 0274.34061
[4] Ghidaglia, J. M.; Témam, R., Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl., 66, 273-319 (1987) · Zbl 0572.35071
[5] Hale, J. K., Asymptotic behavior and dynamics in infinite dimensions, (Hale; Martinez-Amores, Nonlinear Differential Equations. Nonlinear Differential Equations, Res. Notes in Math., Vol. 132 (1985), Pittman), 1-42 · Zbl 0653.35006
[6] Haraux, A., Two remarks on dissipative hyperbolic problems, (Lions, J. L., Séminaire du Collége de France (1985), Pittman: Pittman Boston) · Zbl 0579.35057
[7] Henry, D., Geometric theory of semilinear parabolic equations, (Lecture Notes in Mathematics, Vol. 840 (1981), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0456.35001
[8] Ladyzhenskaya, O. A., The boundary value problems of mathematical physics, (Applied Mathematical Sciences, Vol. 49 (1985), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0164.12501
[9] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[10] Lions, J. L.; Magenes, E., Problèmes aux limites non homogènes et applications (1968), Dunod: Dunod Paris · Zbl 0165.10801
[12] Massatt, P., Attractivity properties of α-contractions, J. Differential Equations, 48, 326-333 (1983) · Zbl 0542.34058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.