Gianni, Patrizia; Trager, Barry; Zacharias, Gail Gröbner bases and primary decomposition of polynomial ideals. (English) Zbl 0667.13008 J. Symb. Comput. 6, No. 2-3, 149-167 (1988). An algorithm to compute the primary decomposition of ideals in a polynomial ring over a “factorially closed algorithmic principal ideal domain” (see the paper for the technical definition) is given. The construction is based on the Gröbner basis algorithm. Induction over the dimension is used and localization at principal primes lowers the dimension. In the zero-dimensional case Gröbner bases are again used for decomposing. Finally it is showed how the reduction process can be applied to computing radicals and testing for primality. Reviewer: R.Fröberg Cited in 7 ReviewsCited in 172 Documents MSC: 13F20 Polynomial rings and ideals; rings of integer-valued polynomials 13-04 Software, source code, etc. for problems pertaining to commutative algebra 68W30 Symbolic computation and algebraic computation 13A15 Ideals and multiplicative ideal theory in commutative rings Keywords:primary decomposition of ideals; factorially closed algorithmic principal ideal domain; Gröbner basis; computing radicals; testing for primality PDF BibTeX XML Cite \textit{P. Gianni} et al., J. Symb. Comput. 6, No. 2--3, 149--167 (1988; Zbl 0667.13008) Full Text: DOI References: [1] Ayoub, C., The decomposition theorem for ideals in polynomial rings over a domain, J. Algebra, 76, 99-110 (1982) · Zbl 0505.13005 [2] Ayoub, C., On constructing bases for ideals in polynomial rings over the integers, J. Number Theory, 17, 204-225 (1983) · Zbl 0516.13018 [3] Buchberger, B., Ein algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, (Ph.D Thesis (1965), Universitat Innsbruck) · Zbl 1245.13020 [4] Buchberger, B., Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequationes Math., 4, 374-383 (1970) · Zbl 0212.06401 [5] Buchberger, B., A theoretical basis for the reduction of polynomials to canonical forms, ACM SIGSAM Bulletin, 39, 19-29 (1976) [6] Buchberger, B., A criterion for detecting unnecessary reductions in the construction of Gröbner bases, (Symbolic and Algebraic Computation. Symbolic and Algebraic Computation, Lecture notes in computer science, Vol. 72 (1979), Springer-Verlag: Springer-Verlag Heidelberg), 3-21 · Zbl 0417.68029 [7] Buchberger, B., Gröbner bases: An algorithmic method in polynomial ideal theory, (Bose, N. K., Multidimensional Systems Theory (1985), D. Reidel Publishing Co.), 184-232 · Zbl 0587.13009 [8] Davenport, J.; Trager, B., Factorization over finitely generated fields, (Proceedings of the 1981 Symposium on Symbolic and Algebraic Computation—Snowbird. Proceedings of the 1981 Symposium on Symbolic and Algebraic Computation—Snowbird, Utah (1981)), 200-205 [9] Kaplansky, I., (Commutative Rings (1968), Queen Mary College Math Notices: Queen Mary College Math Notices London) [10] Lazard, D., Ideal bases and primary decomposition: case of two variables, J. of Symb. Comp., 1, 261-270 (1985) · Zbl 0616.68036 [11] Richman, F., Constructive aspects of Noetherian rings, Proc. Am. Math. Soc., 44, 436-441 (1974) · Zbl 0265.13011 [12] Seidenberg, A., Constructions in algebra, Trans. Am. Math. Soc., 197, 273-313 (1974) · Zbl 0356.13007 [13] Seidenberg, A., Constructions in a polynomial ring over the ring of integers, Am. J. Math., 100, 685-703 (1978) · Zbl 0416.13013 [14] Seidenberg, A., On the Lasker-Noether Decomposition Theorem, Am. J. Math., 106, 611-638 (1984) · Zbl 0567.13006 [15] Spear, D., A constructive approach to commutative ring theory, (Proc. 1977 MACSYMA Users’ Conference (1977)), 369-376 [16] Trinks, W., Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen, J. Number Theory, 10, 475-488 (1978) · Zbl 0404.13004 [17] Zacharias, G., Generalized Gröbner bases in Commutative Polynomial Rings, (Bachelor’s Thesis (1978), MIT) [18] Zariski, O.; Samuel, P., (Commutative Algebra, Volume I. Graduate Texts in Mathematics Volume 28 (1975), Springer-Verlag: Springer-Verlag Neidelberg) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.