Semi-classical asymptotics in solid state physics. (English) Zbl 0672.35014

Summary: This article studies the Schrödinger equation for an electron in a lattice of ions with an external magnetic field. In a suitable physical scaling the ionic potential becomes rapidly oscillating, and one can build asymptotic solutions for the limit of zero magnetic field by multiple scale methods from “homogenization.” For the time-dependent Schrödinger equation this construction yields wave packets which follow the trajectories of the “semi-classical model.” For the time- independent equation the authors obtain asymptotic eigenfunctions (or “quasimodes”) for the energy levels predicted by Onsager’s relation.


35J10 Schrödinger operator, Schrödinger equation
35Q99 Partial differential equations of mathematical physics and other areas of application
35P20 Asymptotic distributions of eigenvalues in context of PDEs
Full Text: DOI


[1] Ashcroft, N., Mermin, N. D.: Solid state physics. Philadelphia, PA: Holt, Rinehart and Winston 1976 · Zbl 1107.82300
[2] Benssousan, A., Lions, J. L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Amsterdam: North-Holland 1978 · Zbl 0404.35001
[3] Chambers, R. G.: The wave function of a Bloch electron in a magnetic field. Proc. Phys. Soc.89, 695-710 (1966) · doi:10.1088/0370-1328/89/3/325
[4] Duistermaat, J. J.: Oscillatory integrals, Lagrange immersions and unfolding of singularities. Commun. Pure Appl. Math.27, 207-281 (1974) · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[5] Guillot, J., Ralston, J., Trubowitz, E.: Semi-classical approximations in solid state physics. To appear in proceedings VIII ELAM, Rio de Janeiro, July 1986 · Zbl 0688.35085
[6] Helffer, B.: Opérateurs de Schrödinger avec champ magnetique. Seminaire Equations aux Derivées Partielles, 1986-1987, Expose? X
[7] Helffer, B., Sjöstrand, J.: Effect tunnel pour l’equation de Schrödinger avec champ magnetique. Preprint December 1986 · Zbl 0607.35027
[8] Keller, J.: Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems. Ann. Phys.4, 180-188 (1958) · Zbl 0085.43103 · doi:10.1016/0003-4916(58)90032-0
[9] Keller, J., Rubinow, S.: Asymptotic solution of eigenvalue problems. Ann. Phys.9, 24-75 (1960) · Zbl 0087.43002 · doi:10.1016/0003-4916(60)90061-0
[10] Kohn, W.: Theory of Bloch electrons in a magnetic field: The effective Hamiltonians. Phys. Rev.115, 1460-1478 (1959) · Zbl 0091.23501 · doi:10.1103/PhysRev.115.1460
[11] Maslov, V. P., Fedoriuk, M. V.: Semi-classical approximation in quantum mechanics. Dordrecht: D. Reidel 1981
[12] Onsager, L.: Interpretation of the de Haas-van Alphen effect. Phil. Mag.43, 1006-1008 (1952)
[13] Peierls, R.: Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys.80, 763-791 (1933) · Zbl 0006.19204 · doi:10.1007/BF01342591
[14] Zak, J.: Dynamics of electrons in solids in external fields. Phys. Rev.168, 686-695 (1968) · doi:10.1103/PhysRev.168.686
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.