×

The gradient theory of phase transitions for systems with two potential wells. (English) Zbl 0676.49005

Summary: We generalise the gradient theory of phase transitions to the vector valued case. We consider the family of perturbations \[ E_{\epsilon}(u):=\int_{\Omega}W(u)dx\quad +\quad \epsilon^ 2\int_{\Omega}| \nabla u|^ 2 dx \] of the nonconvex functional \(E_ 0(u):=\int_{\Omega}W(u)dx\), where W: \({\mathbb{R}}^ N\to {\mathbb{R}}\) supports two phases and \(N\geq 1\). We obtain the \(\Gamma\) (L\({}^ 1(\Omega))\)-limit of the sequence \(J_{\epsilon}(u):=\epsilon^{-1}E_{\epsilon}(u)\). Moreover, we improve a compactness result ensuring the existence of a subsequence of minimisers of \(E_{\epsilon}(\cdot)\) converging in \(L^ 1(\Omega)\) to a minimiser of \(E_ 0(\cdot)\) with minimal interfacial area.

MSC:

49J99 Existence theories in calculus of variations and optimal control
49J52 Nonsmooth analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Federer, Geometric Measure Theory (1969) · Zbl 0176.00801
[2] Giorgi, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis pp 223– (1979)
[3] DOI: 10.1007/BF00280031 · Zbl 0564.76075
[4] Tartar, Nonlinear analysis and mechanics: Heriot-Watt Symposium IV pp 136– (1979)
[5] DOI: 10.1007/BF00276914 · Zbl 0629.73029
[6] Giusti, Minimal Surfaces and Functions of Bounded Variation (1984) · Zbl 0545.49018
[7] DOI: 10.1007/BF00251230 · Zbl 0616.76004
[8] Kohn, Proc. Roy. Soc. Edinburgh Sect. A 111 pp 69– (1989) · Zbl 0676.49011
[9] DOI: 10.1007/978-1-4613-8704-6_9
[10] Gurtin, Arch. Rational Mech. Anal. 96 pp 243– (1986)
[11] Gurtin, Arch. Rational Mech. Anal. 87 pp 187– (1984)
[12] DOI: 10.1017/S0334270000004926 · Zbl 0597.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.