×

Model predictive control: Theory and practice - a survey. (English) Zbl 0685.93029

Summary: We refer to Model Predictive Control (MPC) as that family of controllers in which there is a direct use of an explicit and separately identifiable model. Control design methods based on the MPC concept have found wide acceptance in industrial applications and have been studied by academia. The reason for such popularity is the ability of MPC designs to yield high performance control systems capable of operating without expert intervention for long periods of time.
In this paper the issues of importance that any control system should address are stated. MPC techniques are then reviewed in the light of these issues in order to point out their advantages in design and implementation. A number of design techniques emanating from MPC, namely Dynamic Matrix Control, Model Algorithmic Control, Inferential Control and Internal Model Control, are put in perspective with respect to each other and the relation to more traditional methods like Linear Quadratic Control is examined.
The flexible constraint handling capabilities of MPC are shown to be a significant advantage in the context of the overall operating objectives of the process industries and the 1-, 2-, and \(\infty\)-norm formulations of the performance objective are discussed. The application of MPC to non-linear systems is examined and it is shown that its main attractions carry over. Finally, it is explained that though MPC is not inherently more or less robust than classical feedback, it can be adjusted more easily for robustness.

MSC:

93B40 Computational methods in systems theory (MSC2010)
93B50 Synthesis problems
62M20 Inference from stochastic processes and prediction
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arkun, Y., Design of steady-state optimizing control structures for chemical processes, (Ph.D. Thesis (1978), University of Minnesota)
[2] Arkun, Y.; Hollett, J.; Canney, W. M.; Morari, M., Experimental study of internal model control, Ind. Engng Chem. Process Des. Dev., 25, 102-108 (1986)
[3] Athans, M.; Falb, P. L., (Optimal Control: an Introduction to the Theory and its Applications (1966), McGraw-Hill: McGraw-Hill New York) · Zbl 0196.46303
[4] Bristol, E. H., After DDC. Idiomatic control, Chem. Engng Prog., 76, 11, 84-89 (1980)
[5] Brosilow, C. B., The structure and design of Smith Predictors from the viewpoint of inferential control, (Proc. Joint Aut. Control Conf.. Proc. Joint Aut. Control Conf., Denver, Colorado (1979)) · Zbl 0575.93029
[6] Brosilow, C. B.; Zhao, G. Q.; Rao, K. C., A linear programming approach to constrained multivariable control, (Proc. Am. Control Conf.. Proc. Am. Control Conf., San Diego, California (1984)), 667-674
[7] Brosilow, C. B.; Zhao, G. Q., A linear programming approach to constrained multivariable process control, Adv. Control Dyn. Syst., 24 (1986) · Zbl 0649.93034
[8] Bryson, A. E.; Denham, W. F.; Dreyfus, S. E., Optimal programming problems with inequality constraints—I. Necessary conditions for extremal solutions, AIAA J., 1, 2544-2550 (1963) · Zbl 0142.35902
[9] Bryson, A. E.; Ho, Y., (Applied Optimal Control (1975), Hemisphere: Hemisphere Washington, DC), Wiley, New York
[10] Caldwell, J. M.; Martin, G. D., On-line analyzer predictive control, (Sixth Annual Control Expo Conf.. Sixth Annual Control Expo Conf., Rosemont, Illinois, 19-21 May (1987))
[11] Campo, P. J.; Morari, M., ∞-Norm formulation of model predictive control problems, (Proc. Am. Control Conf.. Proc. Am. Control Conf., Seattle, Washington (1986)), 339-343
[12] Chang, S. S.L., (Synthesis of Optimum Control Systems (1961), McGraw-Hill: McGraw-Hill New York)
[13] Chang, T. S.; Seborg, D. E., A linear programming approach to multivariable feedback control with inequality constraints, Int. J. Control, 37, 583-597 (1983) · Zbl 0502.93043
[14] Clarke, D. W.; Mohtadi, C., Properties of generalized predictive control, (Proc. 10th IFAC World Congress, Munich, Germany, Vol. 10 (1987)), 63-74 · Zbl 0699.93028
[15] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control—I. The basic algorithm, Automatica, 23, 137-148 (1987) · Zbl 0621.93032
[16] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control—II. Extensions and interpretations, Automatica, 23, 149-160 (1987) · Zbl 0621.93033
[17] (Proc. Joint Aut. Control Conf.. Proc. Joint Aut. Control Conf., San Francisco, California (1980))
[18] Cutler, C. R.; Hawkins, R. B., Constrained multivariable control of a hydrocracker reactor, (Proc. Am. Control Conf.. Proc. Am. Control Conf., Minneapolis, Minnesota (1987)), 1014-1020
[19] DeKeyser, R. M.C.; van Cauwenberghe, A. R., Typical application possibilities for self-tuning predictive control, (IFAC Symp. on Identification and System Parameter Estimation, Washington, DC, Vol. 2 (1982)), 1552-1557
[20] DeKeyser, R. M.C.; van Cauwenberghe, A. R., Extended prediction self-adaptive control, (IFAC Symp. on Identification and System Parameter Estimation. IFAC Symp. on Identification and System Parameter Estimation, York, U.K. (1985)), 1255-1260
[21] DeKeyser, R. M.C.; VandeVelde, Ph. G.A.; Dumoriter, F. A.G., A comparative study of self-adaptive long-range predictive control methods, (IFAC Symp. on Identification and System Parameter Estimation. IFAC Symp. on Identification and System Parameter Estimation, York, U.K. (1985)), 1317-1322
[22] Denham, W. F.; Bryson, A. E., Programming problems with inequality constraints—II. Solution by the steepest ascent, AIAA J., 2, 25-26 (1964)
[23] Economou, C. G.; Morari, M., Newton control laws for nonlinear controller design, (Proc. IEEE Conf. on Decision and Control. Proc. IEEE Conf. on Decision and Control, Fort Lauderdale, Florida (1985)), 1361-1366
[24] Economou, C. G., An operator theory approach to nonlinear controller design, (Ph.D. Thesis (1986), California Institute of Technology)
[25] Economou, C. G.; Morari, M.; Palsson, B., Internal model control—5. Extension to nonlinear systems, Ind. Engng Chem. Process Des. Dev., 25, 403-411 (1986)
[26] Enns, D., Model reduction for control system design, (Ph.D. Thesis (1984), Stanford University)
[27] Frank, P. M., (Entwurf von Regelkreisen mit vorgeschriebenem Verhalten (1974), G. Braun: G. Braun Karlsruhe), (1974) · Zbl 0357.93001
[28] Gantmacher, F. R., (The Theory of Matrices, Vol. I (1959), Chelsea: Chelsea New York) · Zbl 0085.01001
[29] García, C. E., Studies in optimizing and regulatory control of chemical processing systems, (Ph.D. Thesis (1982), University of Wisconsin: University of Wisconsin Madison)
[30] García, C. E.; Morari, M., Internal model control—1. A unifying review and some new results, Ind. Engng Chem. Process Des. Dev., 21, 308-323 (1982)
[31] García, C. E., Quadratic dynamic matrix control of nonlinear processes. An application to a batch reaction process, (AIChE Annual Mtg. AIChE Annual Mtg, San Francisco, California (1984))
[32] Chem. Engng Commun., 46, 73-87 (1986)
[33] García, C. E.; Morari, M., Internal model control—2. Design procedure for multivariable systems, Ind. Engng Chem. Process Des. Dev., 24, 472-484 (1985)
[34] García, C. E.; Morari, M., Internal model control—3. Multivariable control law computation and tuning guidelines, Ind. Engng Chem. Process Des. Dev., 24, 484-494 (1985)
[35] García, C. E.; Prett, D. M., Advances in industrial model—predictive control, (Morari, M.; McAvoy, T. J., Chemical Process Control—CPC III (1986), CACHE and Elsevier: CACHE and Elsevier Amsterdam), 249-294
[36] Giloi, W., Zur Theorie und Verwirklichung einer Regelung für Laufzeitstreken nach dem Prinzip der ergänzenden Rückführung, Ph.D. Thesis (1959), TH Stuttgart
[37] Grosdidier, P. (1987). Setpoint, Inc., Houston, Personal communication.; Grosdidier, P. (1987). Setpoint, Inc., Houston, Personal communication.
[38] Gutman, P. O., Controllers for bilinear and constrained linear systems, (Ph.D. Thesis (1982), Lund Institute of Technology)
[39] Hirschorn, R. M., Invertibility of Multivariable nonlinear control systems, IEEE Trans. Aut. Control, 24, 855-865 (1979) · Zbl 0427.93020
[40] Horowitz, I. M., (Synthesis of Feedback Systems (1963), Academic Press: Academic Press London) · Zbl 0121.07704
[41] Kwakernaak, H.; Sivan, R., (Linear Optimal Control Systems (1972), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0276.93001
[42] Lee, E. B.; Markus, L., (Foundations of Optimal Control Theory (1967), Wiley: Wiley New York) · Zbl 0159.13201
[43] Levien, K. L., Studies in the design and control of coupled distillation columns, (Ph.D. Thesis (1985), University of Wisconsin: University of Wisconsin Madison)
[44] Levien, K. L.; Morari, M., Internal model control of coupled distillation columns, A.I.Ch.E. Jl, 33, 83 (1987)
[45] Marqués, D., On-line optimization of large scale dynamic systems, (Ph.D. Thesis (1985), University of Wisconsin: University of Wisconsin Madison)
[46] Marqués, D.; Morari, M., Model predictive control of gas pipeline networks, (Proc. Am. Control Conf.. Proc. Am. Control Conf., Seattle, Washington (1986)), 349-354
[47] Martin, G. D.; Caldwell, J. M.; Ayral, T. E., Predictive control applications for the petroleum refining industry, (Japan Petroleum Institute—Petroleum Refining Conf.. Japan Petroleum Institute—Petroleum Refining Conf., Tokyo, Japan, 27-28 October (1986))
[48] Matsko, T. N., Internal model control for chemical recovery, Chem. Engng Prog., 81, 12, 46-51 (1985)
[49] Mehra, R. K.; Rouhani, R., Theoretical considerations on model algorithmic control for nonminimum phase systems, (Proc. Joint Aut. Control Conf.. Proc. Joint Aut. Control Conf., San Francisco, California (1980))
[50] Mehra, R. K.; Rouhani, R.; Eterno, J.; Richalet, J.; Rault, A., Model algorithmic control: review and recent development, (Engng Foundation Conf. on Chemical Process Control II. Engng Foundation Conf. on Chemical Process Control II, Sea Island, Georgia (1982)), 287-310
[51] Morari, M.; Stephanopoulos, G., Minimizing unobservability in inferential control schemes, Int. J. Control, 31, 367-377 (1980) · Zbl 0428.93008
[52] Morari, M.; Doyle, J. C., A unifying framework for control system design under uncertainty and its implications for chemical process control, (Morari, M.; McAvoy, T. J., Chemical Process Control—CPC III (1986), CACHE and Elsevier: CACHE and Elsevier Amsterdam), 5-52
[53] Morari, M.; Scali, C., A comparison of internal model control and linear quadratic optimal control for SISO systems, Ind. Engng Chem. Res. (1989), (submitted)
[54] Morari, M.; Zafiriou, E., (Robust Process Control (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey)
[55] Morshedi, A. M.; Cutler, C. R.; Skrovanek, T. A., Optimal solution of dynamic matrix control with linear programming techniques (LDMC), (Proc. Am. Control Conf.. Proc. Am. Control Conf., Boston, Massachusetts (1985)), 199-208
[56] Newton, G. C.; Gould, L. A.; Kaiser, J. F., (Analytical Design of Feedback Controls (1957), Wiley: Wiley New York)
[57] Parrish, J. R.; Brosilow, C. B., Inferential control applications, Automatica, 21, 527-538 (1985) · Zbl 0575.93029
[58] Peterka, V., Predictor-based self-tuning control, Automatica, 20, 39-50 (1984) · Zbl 0539.93054
[59] Prett, D. M.; Gillette, R. D., Optimization and constrained multivariable control of a catalytic cracking unit, (Proc. Joint Aut. Control Conf.. Proc. Joint Aut. Control Conf., San Francisco, California (1979))
[60] Prett, D. M.; García, C. E., (Fundamental Process Control (1988), Butterworths: Butterworths Stoneham, Massachusetts)
[61] Propoi, A. I., Use of LP methods for synthesizing sampled-data automatic systems, Automn Remote Control, 24, 837 (1963)
[62] Reid, J. G.; Mehra, R. K.; Kirkwood, E., Robustness properties of output predictive dead-beat control: SISO case, (Proc. IEEE Conf. on Decision and Control. Proc. IEEE Conf. on Decision and Control, Fort Lauderdale, Florida (1979))
[63] Richalet, J. A.; Rault, A.; Testud, J. L.; Papon, J., Model predictive heuristic control: applications to an industrial process, Automatica, 14, 413-428 (1978)
[64] Ricker, N. L., The use of quadratic programming for constrained internal model control, Ind. Engng Chem. Process Des. Dev., 24, 925-936 (1985)
[65] Skogestad, S.; Morari, M., Control of ill-conditioned plants: high purity distillation, (AIChE Annual Mtg. AIChE Annual Mtg, Miami Beach. Florida (1986)) · Zbl 0669.93055
[66] Smith, O. J.M., Closer control of loops with dead time, Chem. Engng Prog., 53, 5, 217-219 (1957)
[67] Vidyasagar, M., (Control System Synthesis—a Factorization Approach (1985), MIT: MIT Cambridge, Massachusetts) · Zbl 0655.93001
[68] Ydstie, B. E., Extended horizon adaptive control, (9th World Congress of the IFAC. 9th World Congress of the IFAC, Budapest, Hungary (1984)) · Zbl 0572.93070
[69] Youla, D. C.; Bongiorno, J. J.; Jabr, H. A., Modern Wiener-Hopf design of optimal controllers—I. The single-input-output case, IEEE Trans. Aut. Control, AC-21, 3-13 (1976) · Zbl 0323.93047
[70] Youla, D. C.; Jabr, H. A.; Bongiorno, J. J., Modern Wiener-Hopf design of optimal controllers—II. The multivariable case, IEEE Trans. Aut. Control, AC-21, 319-338 (1976) · Zbl 0339.93035
[71] Zadeh, L. A.; Whalen, B. H., On optimal control and linear programming, IRE Trans. Aut. Control, 7, 4, 45 (1962)
[72] Zafiriou, E.; Morari, M., Digital controllers for SISO systems, A review and a new algorithm. A review and a new algorithm, Int. J. Control, 42, 855-876 (1985) · Zbl 0577.93044
[73] Zafiriou, E.; Morari, M., Robust digital controller design for multivariable systems, (AIChE National Mtg. AIChE National Mtg, Chicago, Illinois (1985)) · Zbl 0642.93025
[74] Zafiriou, E.; Morari, M., Design of the IMC filter by using the structured singular value approach, (Proc. Am. Control Conf.. Proc. Am. Control Conf., Seattle, Washington (1986)), 1-6
[75] Zafiriou, E.; Morari, M., Design of robust controllers and sampling time selection for SISO systems, Int. J. Control, 44, 711-735 (1986) · Zbl 0602.93048
[76] Zafiriou, E.; Morari, M., Digital controller design for multivariable systems with structural closed-loop performance specifications, Int. J. Control, 46, 2087-2111 (1987) · Zbl 0642.93025
[77] Zames, G., Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses, IEEE Trans. Aut. Control, AC-26, 301-320 (1981) · Zbl 0474.93025
[78] Zirwas, H. C., Die ergänzende Rückführung als Mittel zur schnellen Regelung von Regelstrecken mit Laufzeit, Ph.D. Thesis (1958), TH Stuttgart
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.