×

The numerical treatment of Volterra integro-differential equations with unbounded delay. (English) Zbl 0687.65131

Author’s summary: Initial-value problems for ordinary and partial Volterra integro-differential equations with infinite (and finite) delay arise in the mathematical modelling of various physical and biological phenomena. In this paper we give a survey of some recent developments in the numerical treatment of such functional equations, with the focus being on equations with infinite delay. In addition, we will discuss a number of numerical aspects that are not yet understood well.
Reviewer: Z.Jackiewicz

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baker, C. T.H., Initial value problems for Volterra integro-differential equations, (Hall, G.; Watt, J. M., Modern Numerical Methods for Ordinary Differential Equations (1976), Clarendon Press: Clarendon Press Oxford), 296-307 · Zbl 0348.65064
[2] Banks, H. T.; Burns, J. A., Hereditary control problems: numerical methods based on averaging approximations, SIAM J. Control Optim., 16, 169-208 (1978) · Zbl 0379.49025
[3] Banks, H. T.; Burns, J. A.; Cliff, E. M., Parameter estimation and identification for systems with delays, SIAM J. Control Optim., 19, 791-828 (1981) · Zbl 0504.93019
[4] Banks, H. T.; Kappel, F., Spline approximations for functional differential equations, J. Differential Equations, 34, 496-522 (1979) · Zbl 0422.34074
[5] Bellen, A., Constrained mesh methods for functional differential equations, (Meinardus, G.; Nürnberger, G., Delay Equations, Approximation and Application. Delay Equations, Approximation and Application, Internat. Ser. Numer. Math., 74 (1985), Birkhäuser: Birkhäuser Basel), 52-70 · Zbl 0577.65125
[6] Bellman, R.; Cooke, K. L., Differential-Difference Equations (1963), Academic Press: Academic Press New York · Zbl 0115.30102
[7] Brunner, H., The numerical solution of initial-value problems for integro-differential equations, (Griffiths, D. F.; Watson, G. A., Numerical Analysis 1987. Numerical Analysis 1987, Pitman Research Notes in Math., 170 (1988), Longman: Longman Harlow), 18-38 · Zbl 0651.65097
[8] Brunner, H., The approximate solution of initial-value problems for general Volterra integro-differential equations, Computing, 40, 125-137 (1988) · Zbl 0631.65141
[9] Brunner, H., The approximate solution of nonlinear Volterra integro-differential equations with infinite delay, Proc. Internat. Conf. on Theory and Applications of Differential Equations. Proc. Internat. Conf. on Theory and Applications of Differential Equations, Columbus/Ohio. Proc. Internat. Conf. on Theory and Applications of Differential Equations. Proc. Internat. Conf. on Theory and Applications of Differential Equations, Columbus/Ohio, Differential Equations and Applications (1988), to appear · Zbl 0721.65098
[10] Brunner, H.; van der Houwen, P. J., The Numerical Solution of Volterra Equations, (CWI Monographs, 3 (1986), North-Holland: North-Holland Amsterdam) · Zbl 0611.65092
[11] Burton, T. A., Volterra Integral and Differential Equations (1983), Academic Press: Academic Press New York · Zbl 0515.45001
[12] Burton, T. A., Periodic solutions of integrodifferential equations, J. London Math. Soc., 31, 2, 537-548 (1985) · Zbl 0577.45008
[13] Corduneanu, C.; Lakshmikantham, V., Equations with unbounded delay: a survey, Nonlinear Anal., 4, 831-877 (1980) · Zbl 0449.34048
[14] Cryer, C. W., Numerical methods for functional differential equations, (Schmitt, K., Delay and Functional Differential Equations and Their Applications (1972), Academic Press: Academic Press New York), 17-101 · Zbl 0575.65119
[15] Cryer, C. W.; Tavernini, L., The numerical solution of Volterra functional differential equations by Euler’s method, SIAM J. Numer. Anal., 9, 105-129 (1972) · Zbl 0244.65085
[16] Cushing, J. M., Integrodifferential Equations and Delay Models in Population Dynamics, (Lecture Notes in Biomath., 20 (1977), Springer: Springer Berlin) · Zbl 0363.92014
[17] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (1984), Academic Press: Academic Press London · Zbl 0154.17802
[18] Delves, L. M.; Mohamed, J. L., Computational Methods for Integral Equations (1985), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, Chapter 13 · Zbl 0592.65093
[19] Fairweather, G.; Yanik, E. G., Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12, 785-809 (1988) · Zbl 0657.65142
[20] de Gee, M., Characteristic roots of discretized functional differential equations, (Collatz, L.; Meinardus, G.; Wetterling, W., Differential-Difference Equations. Differential-Difference Equations, Internat. Ser. Numer. Math., 62 (1983), Birkhäuser: Birkhäuser Basel), 73-89 · Zbl 0507.34066
[21] de Gee, M., Smoothness of solutions of functional differential equations, J. Math. Anal. Appl., 107, 103-121 (1985) · Zbl 0579.34048
[22] Grossman, S. I.; Miller, R. K., Perturbation theory for integro-differential systems, J. Differential Equations, 8, 457-474 (1970) · Zbl 0209.14101
[23] Hrusa, W. J.; Nohel, J. A., Global existence and asymptotics in one-dimensional nonlinear viscoelasticity, (Ciarlet, P.; Roseau, M., Trends and Applications of Pure Mathematics to Mechanics. Trends and Applications of Pure Mathematics to Mechanics, Lecture Notes in Physics, 195 (1984), Springer: Springer Berlin), 165-187 · Zbl 0543.73043
[24] Kappel, F.; Kunisch, K., Approximation of the state of infinite delay and Volterra-type equations, (Collatz, L.; Meinardus, G.; Wetterling, W., Differential-Difference Equations. Differential-Difference Equations, Internat. Ser. Numer. Math., 62 (1983), Birkhäuser: Birkhäuser Basel), 149-168 · Zbl 0523.34062
[25] Kemper, G. A., Linear multistep methods for a class of functional differential equations, Numer. Math., 19, 361-372 (1972) · Zbl 0229.65058
[26] Levin, J. J.; Nohel, J. A., On a nonlinear delay equation, J. Math. Anal. Appl., 8, 31-44 (1964) · Zbl 0129.07703
[27] Lodge, A. S.; McLeod, J. B.; Nohel, J. A., A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology, Proc. Roy. Soc. Edinburgh Sect. A, 80, 99-137 (1978) · Zbl 0395.45012
[28] Makroglou, A., A block-by-block method for the numerical solution of Volterra delay integro-differential equations, Computing, 30, 49-62 (1983) · Zbl 0499.65064
[29] Markowich, P.; Renardy, M., A nonlinear Volterra integro-differential equation describing the stretching of polymeric liquids, SIAM J. Math. Anal., 14, 66-97 (1983) · Zbl 0507.45013
[30] Nevanlinna, O., Numerical solution of a singularly perturbed nonlinear Volterra equation, (MRC Tech. Summary Report No. 1881 (1978), University of Wisconsin: University of Wisconsin Madison, WI)
[31] Neves, K. W., Automatic integration of functional differential equations: an approach, ACM Trans. Math. Software, 1, 357-368 (1975) · Zbl 0315.65045
[32] Nohel, J. A., A nonlinear conservation law with memory, (Hannsgen, K. B.; etal., Volterra and Functional Differential Equations. Volterra and Functional Differential Equations, Lecture Notes Pure Appl. Math., 81 (1982), Marcel Dekker: Marcel Dekker New York), 91-123 · Zbl 0508.45015
[33] Saperstone, S. H., Semidynamical Systems in Infinite Dimensional Spaces, (Appl. Math. Sciences, 37 (1981), Springer: Springer Berlin) · Zbl 0438.60011
[34] Tavernini, L., One-step methods for the numerical solution of Volterra functional differential equations, SIAM J. Numer. Anal., 8, 786-795 (1971) · Zbl 0231.65070
[35] Tavernini, L., Linear multistep methods for the numerical solution of Volterra functional differential equations, Applicable Anal., 1, 169-185 (1973) · Zbl 0291.65020
[36] Vermiglio, R., A one-step subregion method for delay differential equations, Calcolo, 22, 429-455 (1985) · Zbl 0625.65079
[37] Volterra, V., Sulle equazioni integro-differenziali, Rend. Accad. Lincei, 18, 5, 167-174 (1909) · JFM 40.0399.02
[38] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Memorie der R. Comitato talassografico italiano. Memorie der R. Comitato talassografico italiano, Opere Matematiche, 5, 1-111 (1927) · JFM 52.0450.06
[39] Volterra, V., Sur la théorie mathématique des phénomènes héréditaires, J. Math. Pures Appl., 7, 9, 249-298 (1928) · JFM 54.0934.06
[40] Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations (1959), Dover: Dover New York · JFM 55.0814.01
[41] Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie (1931), Gauthier-Villars: Gauthier-Villars Paris · JFM 57.0466.02
[42] Arndt, H.; Baker, C. T.H., Runge-Kutta formulae applied to Volterra functional equations, (Numerical Analysis Report No. 155 (1988), University of Manchester) · Zbl 0678.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.