Classical and quantum conformal field theory. (English) Zbl 0694.53074

In this paper a formalism is developed which treats the classification of all conformal field theories. The main objects of this formalism are chiral vertex operators, duality matrices and fundamental identities satisfied by them. The authors assign to every Riemann surface a vector space, spanned by the different conformal blocks. Since the Riemann surface can be formed by sewing a number of three holed spheres the different sewing procedures lead to different bases. Therefore the duality matrices are defined as linear transformations in this space. They have to satisfy some consistency conditions.
In order to obtain them the authors construct a simplicial complex and define the notations of “simple moves” and fundamental loops. The set of transformations on the simplicial complex is a duality groupoid. The simple moves are generators of the groupoid and the relations of the fundamental loops are its defining relations. It is shown that in the particular case of “classical conformal field theory”, when the conformal weights of all primary fields vanish, the meaning of these equations is well understood. Using results from category theory, the correspondence between classical conformal field theory and group theory is made more complete.
Reviewer: V.Abramov


53C80 Applications of global differential geometry to the sciences
57R22 Topology of vector bundles and fiber bundles
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
20C35 Applications of group representations to physics and other areas of science
Full Text: DOI


[1] Belavin, A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B241, 33 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[2] Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys. B247, 83 (1984) · Zbl 0661.17020 · doi:10.1016/0550-3213(84)90374-2
[3] Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor. Math. Phys.65, 1205 (1986) · doi:10.1007/BF01036128
[4] Zamolodchikov, A.B., Fateev, V.A.: Parafermionic currents in the two-dimensional conformal quantum field theory and self dual critical points inZ(n) invariant statistical systems. Sov. Phys. JETP62, 215 (1985)
[5] Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B281, 509 (1987) · doi:10.1016/0550-3213(87)90418-4
[6] Friedan, D.: A new formulation of string theory. Physica Scripta T15, 72 (1987)
[7] Friedan, D, Shenker, S.: Talks at Cargese and I.A.S. (unpublished) (1987)
[8] Kastor, D., Martinec, E., Qiu, Z.: Current algebra and conformal discrete series. Phys. Lett.200 B, 434 (1988)
[9] Bagger, J., Nemeschansky, D., Yankielowicz, S.: Virasoro algebras with central chargec>1. Phys. Rev. Lett.60, 389 (1988) · doi:10.1103/PhysRevLett.60.389
[10] Douglas, M.R.:G/H conformal field theory. CALT-68-1453
[11] Ravanini, F.: An infinite class of new conformal field theories with extended algebras. Nordita-87/56-P · Zbl 0739.17012
[12] Harvey, J.A., Moore, G., Vafa, C.: Quasicrystalline compactification. Nucl. Phys. B304, 269 (1988) · doi:10.1016/0550-3213(88)90627-X
[13] Anderson, G., Moore, G.: Rationality in conformal field theory. Commun. Math. Phys.117, 441 (1988) · Zbl 0647.17012 · doi:10.1007/BF01223375
[14] Verlinde, E.: Fusion rules and modular transformations in 2-D conformal field theory. Nucl. Phys. B300, 360 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[15] Vafa, C.: Toward classification of conformal theories. Phys. Lett.206 B, 421 (1988)
[16] Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett. (in press) · Zbl 0694.53074
[17] Bais, F.A., Bouwknegt, P., Surridge, M., Schoutens, K.: Extensions of the Virasoro algebra constructed from Kac-Moody algebra using higher order casimir invariants. Nucl. Phys. B304, 348 (1988); Coset constructions for extended Virasoro algebras. Nucl. Phys. B304, 371 (1988) · Zbl 0675.17009 · doi:10.1016/0550-3213(88)90631-1
[18] Mathur, S.D., Mukhi, S., Sen, A.: Differential equations for correlators in arbitrary rational conformal field theories. TIFR/TH/88-32; On the classification of rational conformal field theories. TIFR/TH/88-39
[19] Bakas, I.: Higher spin fields and the Gelfand-Dicke Algebra, the Hamiltonian structure of the spin 4 operator algebra. University of Texas at Austin preprints · Zbl 0689.35100
[20] Lukyanov, S.L., Fateev, V.A.: Additional symmetries in two dimensional conformal field theory and exactly solvable models, Parts I, II, III. (In Russian) Institute for Theoretical Physics (Kiev) preprint ITP-88-74P
[21] Brustein, R., Yankielowicz, S., Zuber, J.-B.: Factorization and selection rules of operator product algebras in conformal field theory. TAUP-1647-88
[22] Dijkgraaf, R., Verlinde, E.: Modular invariance and the fusion algebra. Presented at Annecy Conf. on conformal field theory · Zbl 0958.81510
[23] Moore, G., Seiberg, N.: Naturality in conformal field theory. Nucl. Phys. (in press) · Zbl 0694.53074
[24] Blok, B., Yankielowicz, S.: Extended algebras and the coset construction of conformal field theories. TAU-1661-88
[25] Witten, E.: Quantum field theory and the Jones polynomials. To appear in the proc. of the IAMP Congress, Swansea, July, 1988
[26] Segal, G.: Talks at IAS 1987
[27] Ishibashi, N., Matsuo, Y., Ooguri, H.: Soliton equations and free fermions on Riemann surfaces. UT-499-Tokyo
[28] Alvarez-Gaumé, L., Gomez, C., Reina, C.: Loop groups, Grassmannians and string theory. Phys. Lett.190 B, 55 (1987)
[29] Vafa, C.: Operator formulation on Riemann surfaces. Phys. Lett.190 B, 47 (1987)
[30] Also see, Alvarez-Gaumé, L., Gomez, C., Moore, G., Vafa, C.: Strings in the operator formalism. Nucl. Phys. B303, 455 (1988) · doi:10.1016/0550-3213(88)90391-4
[31] Alvarez-Gaumé, L., Gomez, C., Nelson, P., Sierra, G., Vafa, C.: Fermionic strings in the operator formalism. BUHEP-88-11, and refs. therein
[32] In the mathematical literature these have been discussed In: Borcherds, R.: Proc. Nat. Acad. Sci. USA,83, 3068 (1986) · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[33] Lepowsky, J.: Perspectives on the Monster. Lepowsky, J., Frenkel, I., Meurman, A.: Vertex operators and the Monster. Academic Press, New York to appear; Borcherds, R.: Berkeley preprints · Zbl 0674.17001
[34] Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super Virasoro algebras. Commun. Math. Phys.103, 105 (1986) · Zbl 0588.17014 · doi:10.1007/BF01464283
[35] Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. Nulc. Phys. B261, 678 (1985); Strings on orbifolds. II. Nucl. Phys. B274, 285 (1986) · doi:10.1016/0550-3213(85)90593-0
[36] Goddard, P., Schwimmer, A.: Unitary constructions of extended conformal algebras. Phys. Lett.206 B, 62 (1988)
[37] Schroer, B.: Quasiprimary fields: An approach to positivity of 2-D conformal quantum field theory. Nucl. Phys. B295, 4 (1988); Algebraic aspects of non-perturbative quantum field theories. Como lectures; Rehren, K.-H.: Locality of conformal fields in two-dimensions: Exchange algebras on the light cone. Commun. Math. Phys.116, 675 (1988); Fröhlich, J.: Statistics of fields, the Yang-Baxter equation, and the theory of knots and links. Lectures at Cargese 1987, to appear In: Nonperturbative quantum field theory, Plenum Press: New York. Felder, G., Fröhlich, J.: Unpublished lectures notes · doi:10.1016/0550-3213(88)90537-8
[38] Rehren, K.-H., Schroer, B.: Einstein causality and artin braids. FU preprint 88-0439
[39] Tsuchiya, A., Kanie, Y.: Vertex operators in the conformal field theory onP1 and monodromy representations of the braid group. In: Conformal field theory and solvable lattice models. Adv. Stud. Pure Math.16, 297 (1988); Vertex operators in the conformal field theory onP1 and monodromy representations of the braid group. Lett. Math. Phys.13, 303 (1987) · Zbl 0631.17010
[40] Vafa, C.: Conformal theories and punctured surfaces. Phys. Lett.199 B, 195 (1987)
[41] Frenkel, I.: Talk at Canadian Society of Math. Vancouver, Nov. 1987 H. Sonoda. Nucl. Phys. B311, 417 (1988) · doi:10.1016/0550-3213(88)90067-3
[42] DiFrancesco, P.: Structure constants for rational conformal field theories. Saclay preprint, PhT-88/139
[43] Witten, E.: Non-Abelian bosonization. Commun. Math. Phys.92, 455 (1984) · Zbl 0536.58012 · doi:10.1007/BF01215276
[44] Rose, M.E.: Elementary theory of angular momentum. New York: Wiley 1957 · Zbl 0079.20102
[45] Pressley, N., Segal, G.: Loop groups. Oxford: Oxford Univ. Press 1986 · Zbl 0618.22011
[46] Felder, G., Gawedzki, K., Kupiainen, A.: The spectrum of Wess-Zumino-Witten models. IHES/p/87/35
[47] Kirillov, A.A.: Elements of the theory of representations. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0342.22001
[48] Saavedra, N.: Catégories tannakiennes. Lecture Notes in Mathematics, Vol. 265. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0241.14008
[49] Deligne, P., Milne, J.S.: Tannakian categories. In: Hodge cycles, motives and Shimura varieties. Lecture Notes in Mathematics, Vol. 900. Berlin, Heidelberg, New York: Springer 1982 · Zbl 0465.00010
[50] Deligne, P.: Catégories tannakiennes,. IAS preprint
[51] MacLane, S.: Categories for the Working Mathematician. GTM 5 · Zbl 0705.18001
[52] Jones, V.F.R.: Invent. Math.72, 1 (1983) · Zbl 0508.46040 · doi:10.1007/BF01389127
[53] Pasquier, V.: Operator content of the ADE lattice models. J. Phys. A20, 5707 (1987); Continuum limit of lattice models built on quantum groups. Nucl. Phys. B295 491 (1988); Etiology of IRF models. Saclay-SPhT/88/20 · doi:10.1088/0305-4470/20/16/043
[54] Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebraU q (sl(2)).q-orthogonal polynomials and invariants of links. LOMI preprint E-9-88
[55] See, for example, Drinfeld, V.: Quantum Groups. In: Proc. at the Intl. Cong. of Math. 1986, p. 798, and references therein
[56] Reshetikhin, N.Y.: Quantized Universal Enveloping Algebras. The Yang-Baxter Equation and Invariants of Links. LOMI preprint E-4-87, E-17-87
[57] Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651-701 (1988) · Zbl 0665.17010 · doi:10.1007/BF01221114
[58] LeClair, A., Peskin, M., Preitschopf, C.: String field theory on the conformal plane. SLAC-PUB-4306; SLAC-PUB-4307
[59] MacLane, S.: Natural associativity and commutativity. Rice University Studies, Vol. 49, 4, 28 (1963) · Zbl 0244.18008
[60] Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math.72, 221 (1983) · Zbl 0533.57003 · doi:10.1007/BF01389321
[61] Birman, J.: Braids, links, and mapping class groups. Ann. Math. Studies, Vol. 82. Princeton, NJ: Princeton University Press 1974
[62] Birman, J.: On braid groups. Commun. Pure App. Math.22, 41 (1969); Mapping class groups and their relationship to braid groups. Commun. Pure App. Math.22, 213 (1969) · Zbl 0157.30904 · doi:10.1002/cpa.3160220104
[63] Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Israel J. Math.45, 157 (1983); See also the review: Birman, J.: Mapping class group of surfaces. In: Proc. of ?Braids? conference, Contemporary Math. (to appear) · Zbl 0533.57002 · doi:10.1007/BF02774014
[64] DiFrancesco, P., Saleur, H., Zuber, J.-B.: Critical Ising correlations in the plane and on the torus. Nucl. Phys. B290, 527 (1987) · doi:10.1016/0550-3213(87)90202-1
[65] Eilenberg, S., MacLane, S.: Cohomology theory in abstract groups. I. Ann. Math.48, 51 (1947) · Zbl 0029.34001 · doi:10.2307/1969215
[66] Brown, K.: Cohomology of groups. Berlin, Heidelberg, New York: Springer 1982 · Zbl 0584.20036
[67] Jackiw, R.: Three cocycles in mathematics and physics. Phys. Rev. Lett.54, 159 (1985) · doi:10.1103/PhysRevLett.54.159
[68] Grossman, B.: A three cocycle in quantum mechanics. Phys. Lett.152 B, 93 (1985) · Zbl 1177.81097
[69] See, e.g., Loo-Keng, Hua: Introduction to Number Theory, p. 162. Berlin, Heidelberg, New York: Springer 1982
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.